1
|
Ochoa-Hernández AB, Juárez-Vázquez CI,
Rosales-Reynoso MA and Barros-Nunez P: WNT-β-catenin signaling
pathway and its relationship with cancer. Cir Cir. 80:389–398.
2012.(In Spanish). PubMed/NCBI
|
2
|
Liu F and Millar SE: Wnt/beta-catenin
signaling in oral tissue development and disease. J Dent Res.
89:318–330. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lee HS, Park MH, Yang SJ, Park KC, Kim NS,
Kim YS, Kim DI, Yoo HS, Choi EJ and Yeom YI: Novel candidate
targets of Wnt/beta-catenin signaling in hepatoma cells. Life Sci.
80:690–698. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ogasawara N, Tsukamoto T, Mizoshita T,
Inada K, Cao X, Takenaka Y, Joh T and Tatematsu M: Mutations and
nuclear accumulation of beta-catenin correlate with intestinal
phenotypic expression in human gastric cancer. Histopathology.
49:612–621. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ozaki S, Ikeda S, Ishizaki Y, Kurihara T,
Tokumoto N, Iseki M, Arihiro K, Kataoka T, Okajima M and Asahara T:
Alterations and correlations of the components in the Wnt signaling
pathway and its target genes in breast cancer. Oncol Rep.
14:1437–1443. 2005.PubMed/NCBI
|
6
|
Martensson A, Oberg A, Jung A, Cederquist
K, Stenling R and Palmqvist R: Beta-catenin expression in relation
to genetic instability and prognosis in colorectal cancer. Oncol
Rep. 17:447–452. 2007.PubMed/NCBI
|
7
|
Fuchs SY, Ougolkov AV, Spiegelman VS and
Minamoto T: Oncogenic beta-catenin signaling networks in colorectal
cancer. Cell Cycle. 4:1522–1539. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dann CE, Hsieh JC, Rattner A, Sharma D,
Nathans J and Leahy DJ: Insights into Wnt binding and signalling
from the structures of two Frizzled cysteine-rich domains. Nature.
412:86–90. 2001. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Holland JD, Klaus A, Garratt AN and
Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr
Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ye N, Wang B, Quan ZF, Pan HB, Zhang ML
and Yan QG: The research progress of the interactions between miRNA
and Wnt/beta-catenin signaling pathway in breast cancer of human
and mice. Asian Pac J Cancer Prev. 15:1075–1079. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Arend RC, Londoño-Joshi AI, Straughn JM Jr
and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A
review. Gynecol Oncol. 131:772–779. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen C, Xue Y, Zhang D, Xu W, Xu H, Yao H,
Pei D and Gu Y: Short hairpin RNA silencing of TGF-βRII and FZD-7
synergistically suppresses proliferation and metastasis of
hepatocellular carcinoma cells. Oncol Lett. 11:2039–2046. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Saran U, Arfuso F, Zeps N and Dharmarajan
A: Secreted frizzled-related protein 4 expression is positively
associated with responsiveness to cisplatin of ovarian cancer cell
lines in vitro and with lower tumour grade in mucinous ovarian
cancers. BMC Cell Biol. 13:252012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nojima M, Suzuki H, Toyota M, Watanabe Y,
Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K,
et al: Frequent epigenetic inactivation of SFRP genes and
constitutive activation of Wnt signaling in gastric cancer.
Oncogene. 26:4699–4713. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Suzuki H, Gabrielson E, Chen W, Anbazhagan
R, van Engeland M, Weijenberg MP, Herman JG and Baylin SB: A
genomic screen for genes upregulated by demethylation and histone
deacetylase inhibition in human colorectal cancer. Nat Genet.
31:141–149. 2002. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Granados-Principal S, Quiles JL,
Ramirez-Tortosa C, Camacho-Corencia P, Sanchez-Rovira P,
Vera-Ramirez L and Ramirez-Tortosa MC: Hydroxytyrosol inhibits
growth and cell proliferation and promotes high expression of sfrp4
in rat mammary tumours. Mol Nutr Food Res. 55 Suppl 1:S117–S126.
2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nambotin SB, Lefrancois L, Sainsily X,
Berthillon P, Kim M, Wands JR, Chevallier M, Jalinot P, Scoazec JY,
Trepo C, et al: Pharmacological inhibition of Frizzled-7 displays
anti-tumor properties in hepatocellular carcinoma. J Hepatol.
54:288–299. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Merle P, de la Monte S, Kim M, Herrmann M,
Tanaka S, Von Dem Bussche A, Kew MC, Trepo C and Wands JR:
Functional consequences of frizzled-7 receptor overexpression in
human hepatocellular carcinoma. Gastroenterology. 127:1110–1122.
2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zheng JH, Follis Viacava A, Kriwacki RW
and Moldoveanu T: Discoveries and controversies in BCL-2
protein-mediated apoptosis. FEBS J. 283:2690–2700. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Merle P and Mornex F: Medical therapies
for hepatocellular carcinoma. Cancer Radiother. 15:28–31. 2011.(In
French). View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim JK, Kim BH, Baek SM, Shin DH, Kim WJ,
Jeon YK, Kim SS and Kim IJ: Incidentally detected inoperable
malignant pheochromocytoma with hepatic metastasis treated by
transcatheter arterial chemoembolization. Endocrinol Metab (Seoul).
29:584–589. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Philchenkov A, Zavelevich M, Kroczak TJ
and Los M: Caspases and cancer: Mechanisms of inactivation and new
treatment modalities. Exp Oncol. 26:82–97. 2004.PubMed/NCBI
|
24
|
Pellecchia M and Reed JC: Inhibition of
anti-apoptotic Bcl-2 family proteins by natural polyphenols: New
avenues for cancer chemoprevention and chemotherapy. Curr Pharm
Des. 10:1387–1398. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang K and Lin B: Inhibitor of apoptosis
proteins (IAPs) as regulatory factors of hepatic apoptosis. Cell
Signal. 25:1970–1980. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hengartner MO: The biochemistry of
apoptosis. Nature. 407:770–776. 2000. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Zender L, Spector MS, Xue W, Flemming P,
Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, et
al: Identification and validation of oncogenes in liver cancer
using an integrative oncogenomic approach. Cell. 125:1253–1267.
2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chaturvedi MM, Sung B, Yadav VR, Kannappan
R and Aggarwal BB: NF-κB addiction and its role in cancer: ‘One
size does not fit all’. Oncogene. 30:1615–1630. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pikarsky E, Porat RM, Stein I, Abramovitch
R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E and
Ben-Neriah Y: NF-kappaB functions as a tumour promoter in
inflammation-associated cancer. Nature. 431:461–466. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Haybaeck J, Zeller N, Wolf MJ, Weber A,
Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien PA, et al:
A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer
Cell. 16:295–308. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Anson M, Crain-Denoyelle AM, Baud V,
Chereau F, Gougelet A, Terris B, Yamagoe S, Colnot S, Viguier M,
Perret C and Couty JP: Oncogenic β-catenin triggers an inflammatory
response that determines the aggressiveness of hepatocellular
carcinoma in mice. J Clin Invest. 122:586–599. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schattenberg JM, Schuchmann M and Galle
PR: Cell death and hepatocarcinogenesis: Dysregulation of apoptosis
signaling pathways. J Gastroenterol Hepatol. 26 Suppl 1:S213–S219.
2011. View Article : Google Scholar
|
33
|
Hong S, Lim S, Li AG, Lee C, Lee YS, Lee
EK, Park SH, Wang XJ and Kim SJ: Smad7 binds to the adaptors TAB2
and TAB3 to block recruitment of the kinase TAK1 to the adaptor
TRAF2. Nat Immunol. 8:504–513. 2007. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Lee YS, Kim JH, Kim ST, Kwon JY, Hong S,
Kim SJ and Park SH: Smad7 and Smad6 bind to discrete regions of
Pellino-1 via their MH2 domains to mediate TGF-beta1-induced
negative regulation of IL-1R/TLR signaling. Biochem Biophys Res
Commun. 393:836–843. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nishita M, Hashimoto MK, Ogata S, Laurent
MN, Ueno N, Shibuya H and Cho KW: Interaction between Wnt and
TGF-beta signalling pathways during formation of Spemann's
organizer. Nature. 403:781–785. 2000. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang M, Lee CH, Luo DD, Krupa A, Fraser D
and Phillips A: Polarity of response to transforming growth
factor-beta1 in proximal tubular epithelial cells is regulated by
beta-catenin. J Biol Chem. 282:28639–28647. 2007. View Article : Google Scholar : PubMed/NCBI
|