1
|
Hawthorn L, Luce J, Stein L and Rothschild
J: Integration of transcript expression, copy number and LOH
analysis of infiltrating ductal carcinoma of the breast. BMC
Cancer. 10:4602010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rakha EA, Reis-Filho JS, Baehner F, Dabbs
DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani
SR, et al: Breast cancer prognostic classification in the molecular
era: The role of histological grade. Breast Cancer Res. 12:2072010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wirapati P, Sotiriou C, Kunkel S, Farmer
P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag
T, Schütz F, et al: Meta-analysis of gene expression profiles in
breast cancer: Toward a unified understanding of breast cancer
subtyping and prognosis signatures. Breast Cancer Res. 10:R652008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Sundquist M, Thorstenson S, Brudin L,
Nordenskjold B and Nordenskjöld B: Applying the nottingham
prognostic index to a Swedish breast cancer population. South East
Swedish Breast Cancer Study Group. Breast Cancer Res Treat. 53:1–8.
1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Elston CW and Ellis IO: Pathological
prognostic factors in breast cancer. I. The value of histological
grade in breast cancer: Experience from a large study with
long-term follow-up. Histopathology. 19:403–410. 1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Trudeau ME, Pritchard KI, Chapman JA,
Hanna WM, Kahn HJ, Murray D, Sawka CA, Mobbs BG, Andrulis I,
McCready DR and Lickley HL: Prognostic factors affecting the
natural history of node-negative breast cancer. Breast Cancer Res
Treat. 89:35–45. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma
L, Mahankali S and Gao JH: Differentiation of clinically benign and
malignant breast lesions using diffusion-weighted imaging. J Magn
Reson Imaging. 16:172–178. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bammer R: Basic principles of
diffusion-weighted imaging. Eur J Radiol. 45:169–184. 2003.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Sinha S, Lucas-Quesada FA, Sinha U,
DeBruhl N and Bassett LW: In vivo diffusion-weighted MRI of the
breast: Potential for lesion characterization. J Magn Reson
Imaging. 15:693–704. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hosseinzadeh K and Schwarz SD: Endorectal
diffusion-weighted imaging in prostate cancer to differentiate
malignant and benign peripheral zone tissue. J Magn Reson Imaging.
20:654–661. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao J, Guan H, Li M, Gu H, Qin J and Wu
X: Significance of the ADC ratio in the differential diagnosis of
breast lesions. Acta Radiol. 57:422–429. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Çabuk G, Puce Nass M, Özgür A, Apaydın FD,
Polat A and Orekici G: The diagnostic value of diffusion-weighted
imaging and the apparent diffusion coefficient values in the
differentiation of benign and malignant breast lesions. J Med
Imaging Radiat Oncol. 59:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Costantini M, Belli P, Rinaldi P, Bufi E,
Giardina G, Franceschini G, Petrone G and Bonomo L:
Diffusion-weighted imaging in breast cancer: Relationship between
apparent diffusion coefficient and tumour aggressiveness. Clin
Radio. 65:1005–1012. 2010. View Article : Google Scholar
|
14
|
Razek AA, Gaballa G, Denewer A and Nada N:
Invasive ductal carcinoma: Correlation of apparent diffusion
coefficient value with pathological prognostic factors. NMR Biomed.
23:619–623. 2010. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Belli P, Costantini M, Bufi E, Giardina
GG, Rinaldi P, Franceschini G and Bonomo L: Diffusion magnetic
resonance imaging in breast cancer characterization: Correlations
between the apparent diffusion coefficient and major prognostic
factors. Radiol Med. 120:268–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cipolla V, Santucci D, Guerrieri D, Drudi
FM, Meggiorini ML and de Felice C: Correlation between 3T apparent
diffusion coefficient values and grading of invasive breast
carcinoma. Eur J Radio. 183:2144–2150. 2014. View Article : Google Scholar
|
17
|
Park SH, Choi HY and Hahn SY: Correlations
between apparent diffusion coefficient and invasive ductal
carcinoma and pathologic factors on diffusion-weighted imaging MRI
at 3.0 Tesla. J Magn Reson Imaging. 41:175–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Durando M, Gennaro L, Cho GY, Giri DD,
Gnanasigamani MM, Patil S, Sutton EJ, Deasy JO, Morris EA and
Thakur SB: Quantitative apparent diffusion coefficient measurement
obtained by 3.0 Tesla MRI as a potential noninvasive marker of
tumor aggressiveness in breast cancer. Eur J Radiol. 85:1651–1658.
2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Park EK, Cho KR, Seo BK, Woo OH, Cho SB
and Bae JW: Additional value of diffusion-weighted imaging to
evaluate prognostic factors of breast cancer: Correlation with the
apparent diffusion coefficient. Iran J Radiol. 13:e331332016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Shin HJ, Kim SH, Lee HJ, Gong G, Baek S,
Chae EY, Choi WJ, Cha JH and Kim HH: Tumor apparent diffusion
coefficient as an imaging biomarker to predict tumor aggressiveness
in patients with estrogen-receptor-positive breast cancer. NMR
Biomed. 29:1070–1078. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hirano M, Satake H, Ishigaki S, Ikeda M,
Kawai H and Naganawa S: Diffusion-weighted imaging of breast
masses: Comparison of diagnostic performance using various apparent
diffusion coefficient parameters. AJR Am J Roentgenol. 198:717–722.
2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Elston CW: Classification and grading of
invasive breast carcinoma. Verh Dtsch Ges Pathol. 89:35–44.
2005.PubMed/NCBI
|
23
|
Bellip P, Costantini M, Bufi E,
Magistrelli A, La Torre G and Bonomo L: Diffusion-weighted imaging
in breast lesion evaluation. Radiol Med. 115:51–69. 2010.(In
English, Italian). View Article : Google Scholar : PubMed/NCBI
|
24
|
Woodhams R, Matsunaga K, Kan S, Hata H,
Ozaki M, Iwabuchi K, Kuranami M, Watanabe M and Hayakawa K: ADC
mapping of benign and malignant breast tumors. Magn Reson Med Sci.
4:35–42. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mori N, Ota H, Mugikura S, Takasawa C,
Tominaga J, Ishida T, Watanabe M, Takase K and Takahashi S:
Detection of invasive components in cases of breast ductal
carcinoma in situ on biopsy by using apparent diffusion coefficient
MR parameters. Eur Radiol. 23:2705–2712. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kato F, Kudo K, Yamashita H, Wang J,
Hosoda M, Hatanaka KC, Mimura R, Oyama-Manabe N and Shirato H:
Differences in morphological features and minimum apparent
diffusion coefficient values among breast cancer subtypes using
3-tesla MRI. Eur J Radio. 185:96–102. 2016. View Article : Google Scholar
|
27
|
Byun BH, Noh WC, Lim I, Lee SS, Cho AR,
Park JA, Kim KM, Kim HA, Kim EK, Kim BI, et al: A new method for
apparent diffusion coefficient measurement using sequential
18F-FDG PET and MRI: Correlation with histological grade
of invasive ductal carcinoma of the breast. Ann Nucl Med.
27:720–728. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Marini C, Iacconi C, Giannelli M, Cilotti
A, Moretti M and Bartolozzi C: Quantitative diffusion-weighted MR
imaging in the differential diagnosis of breast lesion. Eur Radiol.
17:2646–2655. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tamura T, Murakami S, Naito K, Yamada T,
Fujimoto T and Kikkawa T: Investigation of the optimal b-value to
detect breast tumors with diffusion weighted imaging by 1.5-T MRI.
Cancer Imaging. 14:112014.PubMed/NCBI
|