Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases (Review)
- Authors:
- Ruyi Li
- Rui Zhou
- Jiange Zhang
-
Affiliations: Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: March 26, 2018 https://doi.org/10.3892/ol.2018.8355
- Pages: 7506-7514
This article is mentioned in:
Abstract
Li P, Xin J, Wang Y, Wang S, Li G, Pan X, Liu Z and Wang L: The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009. Environ Sci Pollut Res Int. 20:6433–6444. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du P, Du R, Ren W, Lu Z and Fu P: Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci Total Environ. 610–611:308–315. 2018. View Article : Google Scholar | |
Kim Y, Seo J, Kim JY, Lee JY, Kim H and Kim BM: Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environ Sci Pollut Res Int. 25:4330–4343. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bell ML, Dominici F, Ebisu K, Zeger SL and Samet JM: Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies. Environ Health Perspect. 115:989–995. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Liu H, Alattar M, Jiang S, Han J, Ma Y and Jiang C: The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Sci Rep. 5:169362015. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Bo L, Du X, Liu J, Zeng X, He G, Sun Q, Kan H, Song W, Xie Y and Zhao J: CARD9-mediated ambient PM 2.5-induced pulmonary injury is associated with Th17 cell. Toxicol Lett. 273:36–43. 2017. View Article : Google Scholar : PubMed/NCBI | |
Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I and Segura-Medina P: Aeroparticles, composition, and lung diseases. Front Immunol. 7:32016. View Article : Google Scholar : PubMed/NCBI | |
Jeong SC, Cho Y, Song MK, Lee E and Ryu JC: Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity. Environ Toxicol. 32:1628–1636. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen WL, Lin CY, Yan YH, Cheng KT and Cheng TJ: Alterations in rat pulmonary phosphatidylcholines after chronic exposure to ambient fine particulate matter. Mol Biosyst. 10:3163–3169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pope CA III, Bhatnagar A, Mccracken JP, Abplanalp W, Conklin DJ and O'Toole T: Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res. 119:12042016. View Article : Google Scholar : PubMed/NCBI | |
Gu LZ, Sun H and Chen JH: Histone deacetylases 3 deletion restrains PM2.5-induced mice lung injury by regulating NF-κB and TGF-β/Smad2/3 signaling pathways. Biomed Pharmacother. 85:756–762. 2017. View Article : Google Scholar : PubMed/NCBI | |
Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, et al: Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 14:813–822. 2013. View Article : Google Scholar : PubMed/NCBI | |
de P Pablo-Romero M, Román R, Limón JM and Praena-Crespo M: Effects of fine particles on children's hospital admissions for respiratory health in Seville, Spain. J Air Waste Manage Assoc. 65:436–444. 2015. View Article : Google Scholar | |
Xu Q, Wang S, Guo Y, Wang C, Huang F, Li X, Gao Q, Wu L, Tao L, Guo J, et al: Acute exposure to fine particulate matter and cardiovascular hospital emergency room visits in Beijing, China. Environ Pollut. 220:317–327. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsai SS, Chiu HF, Liou SH and Yang CY: Short-term effects of fine particulate air pollution on hospital admissions for respiratory diseases: A case-crossover study in a tropical city. J Toxicol Environ Health A. 77:1091–1101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kravchenko J, Akushevich I, Abernethy AP, Ross WG Jr and Lyerly HK: Long-term dynamics of death rates of emphysema, asthma, and pneumonia and improving air quality. Int J Chron Obstruct Pulmon Dis. 9:613–627. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jiang N, Liu Q, Huang J, Guo X, Liu F and Gao Z: Impact of air pollutants on outpatient visits for acute respiratory outcomes. Int J Environ Res Public Health. 14:pii:E472017. View Article : Google Scholar | |
Lin H, Wang X, Liu T, Li X, Xiao J, Zeng W and Ma W: Air Pollution and Mortality in China. Adv Exp Med Biol. 1017:103–121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vahedian M, Khanjani N, Mirzaee M and Koolivand A: Ambient air pollution and daily hospital admissions for cardiovascular diseases in Arak, Iran. ARYA Atheroscler. 13:117–134. 2017.PubMed/NCBI | |
Song C, He J, Wu L, Jin T, Chen X, Li R, Ren P, Zhang L and Mao H: Health burden attributable to ambient PM2.5 in China. Environ Pollut. 223:575–586. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kloog I: Fine particulate matter (PM2.5) association with peripheral artery disease admissions in northeastern United States. Int J Environ Health Res. 26:572–577. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Xia L, Wang S, Chao W, Huang F, Qi G, Wu L, Tao L, Jin G and Wei W: Fine particulate air pollution and hospital emergency room visits for respiratory disease in Urban areas in Beijing, China, in 2013. PLoS One. 11:e01530992016. View Article : Google Scholar : PubMed/NCBI | |
Turner MC, Cohen A, Burnett RT, Jerrett M, Diver WR, Gapstur SM, Krewski D, Samet JM and Pope CA III: Interactions between cigarette smoking and ambient PM2.5 for cardiovascular mortality. Environ Res. 154:304–310. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shao Q, Liu T, Korantzopoulos P, Zhang Z, Zhao J and Li G: Association between air pollution and development of atrial fibrillation: A meta-analysis of observational studies. Heart Lung. 45:557–562. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pope CA III, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, Gapstur SM and Thun MJ: Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: Shape of the exposure-response relationships. Environ Health Perspect. 119:1616–1621. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mao G, Nachman RM, Sun Q, Zhang X, Koehler K, Chen Z, Hong X, Wang G, Caruso D and Zong G: Individual and Joint Effects of Early-Life Ambient PM2.5 Exposure and Maternal Pre-Pregnancy Obesity on Childhood Overweight or Obesity. Environ Health Perspect. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang YR, Chen YM, Chen SY and Chan CC: Associations between long-term particulate matter exposure and adult renal function in the taipei metropolis. Environ Health Perspect. 125:602–607. 2017.PubMed/NCBI | |
Ramalingam S, Pawlish K, Gadgeel S, Demers R and Kalemkerian GP: Lung cancer in young patients: Analysis of a Surveillance, Epidemiology, and End Results database. J Clin Oncol. 16:651–657. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Liang H, Zhou Y, Wang C, Zhang S, Pan Y, Wang Y, Yan X, Zhang J, Zhang CY, et al: miR-203 suppresses the proliferation and migration and promotes the apoptosis of lung cancer cells by targeting SRC. PLoS One. 9:e1055702014. View Article : Google Scholar : PubMed/NCBI | |
Harrison RM, Smith DJ and Kibble AJ: What Is Responsible for the Carcinogenicity of PM2.5? Occup Environ Med. 61:799–805. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li WX, Bai C and Song Y: Particulate matter-induced epigenetic changes and lung cancer. Clin Respir J. 11:539–546. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vinikoor-Imler LC, Allen DJ and Luben TJ: An ecologic analysis of county-level PM2.5 concentrations and lung cancer incidence and mortality. Int J Environ Res Public Health. 8:1865–1671. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eckel SP, Cockburn M, Shu YH, Deng H, Lurmann FW, Liu L and Gilliland FD: Air pollution affects lung cancer survival. Thorax. 71:891–898. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Zhao B, Zhao Y, Luo Q, Wang S, Zhao B and Bai S: Reduction in population exposure to PM2.5 and cancer risk due to PM2.5-bound PAHs exposure in Beijing, China during the APEC meeting. Environ Pollut. 225:338–345. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Papoutsidakis N, Deftereos S, Kaoukis A, Bouras G, Giannopoulos G, Theodorakis A, Angelidis C, Hatzis G and Stefanadis C: MicroRNAs and the heart: Small things do matter. Curr Top Med Chem. 13:216–230. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Guo H, Cheng X, Shao M, Wu C, Wang S, Li H, Wei L, Gao Y, Tan W, et al: Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget. 6:29428–29439. 2015.PubMed/NCBI | |
Li X, Lv Y, Gao N, Sun H, Lu R, Yang H, Zhang C, Meng Q, Wu S, Li AQ, et al: microRNA-802/Rnd3 pathway imposes on carcinogenesis and metastasis of fine particulate matter exposure. Oncotarget. 7:35026–35043. 2016.PubMed/NCBI | |
Ding X, Wang M, Chu H, Chu M, Na T, Wen Y, Wu D, Han B, Bai Z, Chen W, et al: Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China. Toxicol Lett. 228:25–33. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sancini G, Farina F, Battaglia C, Cifola I, Mangano E, Mantecca P, Camatini M and Palestini P: Health risk assessment for air pollutants: Alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One. 9:e1096852014. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Liu Y, Duan F, Qin M, Wu F, Sheng W, Yang L, Liu J and He K: Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLoS One. 10:e01382672015. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Feng N, Zheng M, Ye X, Lin H, Yu X, Gan Z, Fang Z, Zhang H, Gao M, et al: PM 2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta. 1861:112–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Li Q, Yang Z, Miao X, Wen Y, Huang S and Ouyang J: Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance. Clin Transl Oncol. 15:818–824. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ellis P, Lonning PE, Borresen-Dale A, Aas T, Geisler S, Akslen LA, Salter I, Smith IE and Dowsett M: Absence of p21 expression is associated with abnormal p53 in human breast carcinomas. Br J Cancer. 76:480–485. 1997. View Article : Google Scholar : PubMed/NCBI | |
Deben C, Van den Bossche J, Van Der Steen N, Lardon F, Wouters A, de Beeck KO, Hermans C, Jacobs J, Peeters M, Van Camp G, et al: Deep sequencing of the TP53 gene reveals a potential risk allele for non-small cell lung cancer and supports the negative prognostic value of TP53 variants. Tumour Biol. 39:10104283176943272017. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Tian D, He J, Wang Y, Zhang L, Cui L, Jia L, Zhang L, Li L, Shu Y, et al: Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget. 7:20691–20703. 2016.PubMed/NCBI | |
Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I and Humar M: Disease relevant modifications of the methylome and transcriptome by particulate matter (PM2.5) from biomass combustion. Epigenetics. 12:779–792. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T and Xu Y: Characteristics of DNA methylation changes induced by traffic-related air pollution. Mutat Res Genet Toxicol Environ Mutagen. 796:46–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Byun HM, Zhong J, Motta V, Barupal J, Zheng Y, Dou C, Zhang F, Mccracken JP, Diaz A, et al: Effects of short-term exposure to inhalable particulate matter on DNA methylation of tandem repeats. Environ Mol Mutagen. 55:322–335. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hou L, Zhang X, Zheng Y, Wang S, Dou C, Guo L, Byun HM, Motta V, Mccracken J, Díaz A, et al: Altered methylation in tandem repeat element and elemental component levels in inhalable air particles. Environ Mol Mutagen. 55:256–265. 2014. View Article : Google Scholar : PubMed/NCBI | |
Graves EE, Maity A and Le QT: The tumor microenvironment in non-small cell lung cancer. Semin Radiat Oncol. 20:156–163. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vendramini-Costa DB and Carvalho JE: Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 18:38312012. View Article : Google Scholar : PubMed/NCBI | |
Cho WC, Kwan CK, Yau S, So PP, Poon PC and Au JS: The role of inflammation in the pathogenesis of lung cancer. Expert Opin Ther Targets. 15:1127–1237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Chen D, Hui Z and Xiao C: The effects for PM2.5 exposure on non-small-cell lung cancer induced motility and proliferation. Springerplus. 5:20592016. View Article : Google Scholar : PubMed/NCBI | |
Almatroodi SA, McDonald CF and Pouniotis DS: Alveolar macrophage polarisation in lung cancer. Lung Cancer Int. 2014:7210872014. View Article : Google Scholar : PubMed/NCBI | |
Baulig A, Blanchet S, Rumelhard M, Lacroix G, Marano F and Baeza-Squiban A: Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells. Front Biosci. 12:771–782. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gualtieri M, Mantecca P, Cetta F and Camatini M: Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549. Environ Int. 34:437–442. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Wei Q, Dong G, Komatsu M, Su Y and Dong Z: Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82:1271–1283. 2012. View Article : Google Scholar : PubMed/NCBI | |
Viry E, Paggetti J, Baginska J, Mgrditchian T, Berchem G, Moussay E and Janji B: Autophagy: An adaptive metabolic response to stress shaping the antitumor immunity. Biochem Pharmacol. 92:31–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taylor R, Cullen S and Martin S: Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 9:231–241. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Emi M and Tanabe K: Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol. 57:545–553. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mohseni N, McMillan S, Chaudhary R, Mok J and Reed B: Autophagy promotes caspase-dependent cell death during Drosophila development. Autophagy. 5:329–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ and Albert ML: Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med. 209:1029–1047. 2012. View Article : Google Scholar : PubMed/NCBI | |
You M, Savaraj N, Kuo MT, Wangpaichitr M, Varona-Santos J, Wu C, Nguyen DM and Feun L: TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under arginine deprivation. Mol Cell Biochem. 374:181–190. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cho D, Jo Y, Hwang JJ, Lee YM, Roh SA and Kim JC: Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett. 274:95–100. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Han J, Lu C, Goldstein LA and Rabinowich H: Autophagic degradation of active caspase-8: A crosstalk mechanism between autophagy and apoptosis. Autophagy. 6:891–900. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Wang H, Liu S, Xing C, Liu Y, Aodengqimuge, Zhou W, Yuan X, Ma Y, Hu M, et al: TP53-dependent autophagy links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5). Autophagy. 12:18322016. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Wu B, Wang Y, He H, Lin Z, Tan J, Yang L, Kamp DW, Zhou X, Tang J, et al: Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells. Mol Med Report. 12:1914–1922. 2015. View Article : Google Scholar | |
Wang Y, Lin Z, Huang H, He H, Yang L, Chen T, Yang T, Ren N, Jiang Y, Xu W, et al: AMPK is required for PM2.5-induced autophagy in human lung epithelial A549 cells. Int J Clin Exp Med. 8:58–72. 2015.PubMed/NCBI | |
Zhou Z, Shao T, Qin M, Miao X, Chang Y, Sheng W, Wu F and Yu Y: The effects of autophagy on vascular endothelial cells induced by airborne PM2.5. J Environ Sci. 2017.(In Press). | |
Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M and Gualtieri M: Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part Fibre Toxicol. 10:632013. View Article : Google Scholar : PubMed/NCBI | |
Gualtieri M, Ovrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, Camatini M and Holme JA: Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res. 713:18–31. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abbas I, Verdin A, Escande F, Saint-Georges F, Cazier F, Mulliez P, Courcot D, Shirali P, Gosset P and Garçon G: In vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model. Environ Res. 147:146–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Zhang F, Wang L, Rui W, Long F, Zhao Y, Chen D and Ding W: Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis. 19:1099–1112. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dagher Z, Garcon G, Billet S, Gosset P, Ledoux F, Courcot D, Aboukais A and Shirali P: Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology. 225:12–24. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ezegbunam W and Foronjy R: Posttranscriptional control of airway inflammation. Wiley Interdiscip Rev RNA. 9:e14552018. View Article : Google Scholar | |
Su N, Lin J, Chen P, Li J, Wu C, Yin K, Liu C, Chen Y, Zhou X and Yuan Y: Evaluation of asthma control and patient's perception of asthma: findings and analysis of a nationwide questionnaire-based survey in China. J Asthma. 50:861–870. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tecer LH, Alagha O, Karaca F, Tuncel G and Eldes N: Particulate matter (PM(2.5), PM(10-2.5), and PM(10)) and children's hospital admissions for asthma and respiratory diseases: A bidirectional case-crossover study. J Toxicol Environ Health A. 71:512–520. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jalaludin B, Khalaj B, Sheppeard V and Morgan G: Air pollution and ED visits for asthma in Australian children: A case-crossover analysis. Int Arch Occup Environ Health. 81:967–974. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jacquemin B, Siroux V, Sanchez M, Carsin AE, Schikowski T, Adam M, Bellisario V, Buschka A, Bono R, Brunekreef B, et al: Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ Health Perspect. 123:613–621. 2015.PubMed/NCBI | |
Kim H, Kim H, Park YH and Lee JT: Assessment of temporal variation for the risk of particulate matters on asthma hospitalization. Environ Res. 156:542–550. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Wong GW and Jing L: Environmental exposure and genetic predisposition as risk factors for Asthma in China. Allergy Asthma Immunol Res. 8:92–100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maestrelli P, Canova C, Scapellato ML, Visentin A, Tessari R, Bartolucci GB, Simonato L and Lotti M: Personal exposure to particulate matter is associated with worse health perception in adult asthma. J Investig Allergol Clin Immunol. 21:120–128. 2011.PubMed/NCBI | |
Wagner JG, Morishita M, Keeler GJ and Harkema JR: Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: A comparison of field exposure studies. Environ Health. 11:452012. View Article : Google Scholar : PubMed/NCBI | |
Xiang Z, Xu X, Zheng X, Reponen T, Chen A and Xia H: Heavy metals in PM 2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. Environ Pollut. 210:346–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Wang C, Zhong N, Han X, Wu C, Yan X, Chen P, Yang W, Henley M and Kramer B: Effect of once-daily indacaterol in a predominantly Chinese population with chronic obstructive pulmonary disease: A 26-week Asia-Pacific study. Respirology. 19:231–238. 2014. View Article : Google Scholar : PubMed/NCBI | |
Montoya-Estrada A, Torres-Ramos YD, Flores-Pliego A, Ramirez-Venegas A, Ceballos-Reyes GM, Guzman-Grenfell AM and Hicks JJ: Urban PM2.5 activates GAPDH and induces RBC damage in COPD patients. Front Biosci (Schol Ed). 5:638–649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cortezlugo M, Ramírezaguilar M, Pérezpadilla R, Sansoresmartínez R, Ramírezvenegas A and Barrazavillarreal A: Effect of personal exposure to PM2.5 on respiratory health in a mexican panel of patients with COPD. Int J Environ Res Public Health. 12:10635–10647. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rice MB, Ljungman PL, Wilker EH, Dorans KS, Gold DR, Schwartz J, Koutrakis P, Washko GR, O'Connor GT and Mittleman MA: Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. Am J Respir Crit Care Med. 191:656–664. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Li B, Yu D, Liu J and Ma Z: Approaches to prevent the patients with chronic airway diseases from exacerbation in the haze weather. J Thorac Dis. 8:E1–E7. 2016.PubMed/NCBI | |
Rahman I and Adcock I: Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 28:219–242. 2006. View Article : Google Scholar : PubMed/NCBI | |
Watterson TL, Sorenson J, Martin R and Coulombe RA Jr: Effects of PM2.5 Collected from Cache Valley Utah in Human Bronchial Epithelial Cells. Annual Meeting of the Society of Toxicology. 2006. | |
Li R, Kou X, Xie L, Cheng F and Geng H: Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ Sci Pollut Res Int. 22:20167–20176. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riva DR, Magalhães CB, Lopes AA, Lanças T, Mauad T, Malm O, Valença SS, Saldiva PH, Faffe DS and Zin WA: Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol. 23:57–67. 2011. View Article : Google Scholar | |
Zhao QJ, Liu XJ, Zeng XL and Bao HR: Effect of PM2.5 on the level of nuclear factor erythroid-2 related factor 2 in chronic obstructive pulmonary disease mice and its relationship with oxidative stress. Zhonghua Yi Xue Za Zhi. 96:2241–2245. 2016.(In Chinese). PubMed/NCBI | |
Yan Z, Wang J, Li J, Jiang N, Zhang R, Yang W, Yao W and Wu W: Oxidative stress and endocytosis are involved in upregulation of interleukin-8 expression in airway cells exposed to PM2.5. Environ Toxicol. 31:1869–1878. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Huang N, Wang Q and Liu H: Study of ambient PM2.5 on the influence of the inflammation injury and the immune function of subchronic exposure rats. Wei Sheng Yan Jiu. 37:423–428. 2008.(In Chinese). PubMed/NCBI | |
Shu J, Liu X, Chu X, Qiu J, Zeng X and Bao H: Effects of PM2.5 on phagocytic function of alveolar macrophages in chronic obstructive pulmonary disease mice. Zhonghua Yi Xue Za Zhi. 96:301–305. 2016.(In Chinese). PubMed/NCBI | |
Gu XY, Chu X, Zeng XL, Bao HR and Liu XJ: Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease. Environ Pollut. 226:163–173. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G and Deng C: Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J Exp Med. 239:117–125. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bekki K, Ito T, Yoshida Y, He C, Arashidani K, He M, Sun G, Zeng Y, Sone H and Kunugita N: PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ Toxicol Pharmacol. 45:362–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Baumgartner J, Zhang Y, Liu Y, Sun Y and Zhang M: Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ Sci Technol. 48:12920–12929. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhong W, Meng Q, Lin Q, Fang C, Huang X, Li C, Huang Y and Tan J: Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma. 52:785–794. 2015.PubMed/NCBI | |
Zhao C, Liao J, Chu W, Wang S, Yang T, Tao Y and Wang G: Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal Toxicol. 24:918–927. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang KL, Liu SY, Chou CC, Lee YH and Cheng TJ: The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS One. 12:e01731582017. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Chen J, Li F, Tian J, Gao JS and Zhang D: A T-cell-based enzyme-linked immunospot assay for tuberculosis screening in Chinese patients with rheumatic diseases receiving infliximab therapy. Clin Exp Med. 11:155–161. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jassal MS, Bakman I and Jones B: Correlation of ambient pollution levels and heavily-trafficked roadway proximity on the prevalence of smear-positive tuberculosis. Public Health. 127:268–274. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lai TC, Chiang CY, Wu CF, Yang SL, Liu DP, Chan CC and Lin HH: Ambient air pollution and risk of tuberculosis: A cohort study. Occup Environ Med. 73:56–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nicola I, Cerutti F, Grego E, Bertone I, Gianella P, D'Angelo A, Peletto S and Bellino C: Characterization of the upper and lower respiratory tract microbiota in Piedmontese calves. Microbiome. 5:1522017. View Article : Google Scholar : PubMed/NCBI | |
Rivas-Santiago CE, Sarkar S, Cantarella P IV, Osornio-Vargas Á, Quintana-Belmares R, Meng Q, Kirn TJ, Strickland Ohman P, Chow JC, Watson JG, et al: Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity. Infect Immun. 83:2507–2517. 2015. View Article : Google Scholar : PubMed/NCBI | |
MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, Quass U, Hoffmann B, Gascon M, Brunekreef B, et al: Air pollution and respiratory infections during early childhood: An analysis of 10 European birth cohorts within the ESCAPE Project. Environ Health Perspect. 122:107–113. 2014.PubMed/NCBI | |
Darrow LA, Klein M, Flanders WD, Mulholland JA, Tolbert PE and Strickland MJ: Air pollution and acute respiratory infections among children 0–4 years of age: An 18-year time-series study. Am J Epidemiol. 180:968–977. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ghosh R, Rossner P, Honkova K, Dostal M, Sram RJ and Hertzpicciotto I: Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes. Environ Int. 87:94–100. 2016. View Article : Google Scholar : PubMed/NCBI |