1
|
The Lancet Oncology: Pancreatic cancer in
the spotlight. Lancet Oncol. 15:2412014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Blum R and Kloog Y: Metabolism addiction
in pancreatic cancer. Cell Death Dis. 5:e10652014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jin X, Pan Y, Wang L, Ma T, Zhang L, Tang
AH, Billadeau DD, Wu H and Huang H: Fructose-1,6-bisphosphatase
inhibits ERK activation and bypasses gemcitabine resistance in
pancreatic cancer by blocking IQGAP1-MAPK interaction. Cancer Res.
77:4328–4341. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Toledo LI, Murga M and Fernandez-Capetillo
O: Targeting ATR and Chk1 kinases for cancer treatment: A new model
for new (and old) drugs. Mol Oncol. 5:368–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cimprich KA, Shin TB, Keith CT and
Schreiber SL: cDNA cloning and gene mapping of a candidate human
cell cycle checkpoint protein. Proc Natl Acad Sci USA.
93:2850–2855. 1996. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu Q, Guntuku S, Cui XS, Matsuoka S,
Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A,
et al: Chk1 is an essential kinase that is regulated by Atr and
required for the G(2)/M DNA damage checkpoint. Genes Dev.
14:1448–1459. 2000.PubMed/NCBI
|
7
|
Cliby WA, Roberts CJ, Cimprich KA,
Stringer CM, Lamb JR, Schreiber SL and Friend SH: Overexpression of
a kinase-inactive ATR protein causes sensitivity to DNA-damaging
agents and defects in cell cycle checkpoints. EMBO J. 17:159–169.
1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lagirand-Cantaloube J, Offner N, Csibi A,
Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT and
Leibovitch SA: The initiation factor eIF3-f is a major target for
atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J.
27:1266–1276. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xie P, Guo S, Fan Y, Zhang H, Gu D and Li
H: Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced
apoptosis in cardiomyocytes through degradation of MAPK
phosphatase-1 and sustained JNK activation. J Biol Chem.
284:5488–5496. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jin X, Pan Y, Wang L, Zhang L,
Ravichandran R, Potts PR, Jiang J, Wu H and Huang H: MAGE-TRIM28
complex promotes the Warburg effect and hepatocellular carcinoma
progression by targeting FBP1 for degradation. Oncogenesis.
6:e3122017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tian S, Li P, Sheng S and Jin X:
Upregulation of pyruvate kinase M2 expression by fatty acid
synthase contributes to gemcitabine resistance in pancreatic
cancer. Oncol Lett. 15:2211–2217. 2018.PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jin X, Yang C, Fan P, Xiao J, Zhang W,
Zhan S, Liu T, Wang D and Wu H: CDK5/FBW7-dependent ubiquitination
and degradation of EZH2 inhibits pancreatic cancer cell migration
and invasion. J Biol Chem. 292:6269–6280. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin X, Tian S and Li P: Histone
acetyltransferase 1 promotes cell proliferation and induces
cisplatin resistance in hepatocellular carcinoma. Oncol Res.
25:939–946. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mei Z, Zhang D, Hu B, Wang J, Shen X and
Xiao W: FBXO32 targets c-Myc for proteasomal degradation and
inhibits c-Myc activity. J Biol Chem. 290:16202–16214. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wu Z, Lee ST, Qiao Y, Li Z, Lee PL, Lee
YJ, Jiang X, Tan J, Aau M, Lim CZ and Yu Q: Polycomb protein EZH2
regulates cancer cell fate decision in response to DNA damage. Cell
Death Differ. 18:1771–1779. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Karnitz LM, Flatten KS, Wagner JM,
Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek
YU, Hopkins KM, et al: Gemcitabine-induced activation of checkpoint
signaling pathways that affect tumor cell survival. Mol Pharmacol.
68:1636–1644. 2005.PubMed/NCBI
|
18
|
Woods D and Turchi JJ: Chemotherapy
induced DNA damage response: Convergence of drugs and pathways.
Cancer Biol Ther. 14:379–389. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gorgoulis VG, Vassiliou LV, Karakaidos P,
Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr,
Kastrinakis NG, Levy B, et al: Activation of the DNA damage
checkpoint and genomic instability in human precancerous lesions.
Nature. 434:907–913. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Matt S and Hofmann TG: The DNA
damage-induced cell death response: A roadmap to kill cancer cells.
Cell Mol Life Sci. 73:2829–2850. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wagner JM and Kaufmann SH: Prospects for
the use of ATR inhibitors to treat cancer. Pharmaceuticals (Basel).
3:1311–1334. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sclafani RA and Holzen TM: Cell cycle
regulation of DNA replication. Annu Rev Genet. 41:237–280. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Tao Y, Leteur C, Yang C, Zhang P, Castedo
M, Pierré A, Golsteyn RM, Bourhis J, Kroemer G and Deutsch E:
Radiosensitization by Chir-124, a selective CHK1 inhibitor: Effects
of p53 and cell cycle checkpoints. Cell Cycle. 8:1196–1205. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Bodine SC, Latres E, Baumhueter S, Lai VK,
Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K,
et al: Identification of ubiquitin ligases required for skeletal
muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gomes MD, Lecker SH, Jagoe RT, Navon A and
Goldberg AL: Atrogin-1, a muscle-specific F-box protein highly
expressed during muscle atrophy. Proc Natl Acad Sci USA.
98:14440–14445. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chou JL, Su HY, Chen LY, Liao YP,
Hartman-Frey C, Lai YH, Yang HW, Deatherage DE, Kuo CT, Huang YW,
et al: Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4
target gene and tumor suppressor, is associated with poor prognosis
in human ovarian cancer. Lab Invest. 90:414–425. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo W, Zhang M, Shen S, Guo Y, Kuang G,
Yang Z and Dong Z: Aberrant methylation and decreased expression of
the TGF-β/Smad target gene FBXO32 in esophageal squamous cell
carcinoma. Cancer. 120:2412–2423. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ciarapica R, De Salvo M, Carcarino E,
Bracaglia G, Adesso L, Leoncini PP, Dall'Agnese A, Walters ZS,
Verginelli F, De Sio L, et al: The Polycomb group (PcG) protein
EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma
by repressing FBXO32 (Atrogin1/MAFbx). Oncogene. 33:4173–4184.
2014. View Article : Google Scholar : PubMed/NCBI
|