Recent advances in CD8+ regulatory T cell research (Review)
- Authors:
- Yating Yu
- Xinbo Ma
- Rufei Gong
- Jianmeng Zhu
- Lihua Wei
- Jinguang Yao
-
Affiliations: Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China, Department of Chunan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China - Published online on: March 29, 2018 https://doi.org/10.3892/ol.2018.8378
- Pages: 8187-8194
This article is mentioned in:
Abstract
Andersen MH: Immune regulation by self-recognition: Novel possibilities for anticancer immunotherapy. J Natl Cancer Inst. 107:pii: djv154. 2015. View Article : Google Scholar : PubMed/NCBI | |
Andersen MH: Novel understanding of self-reactive T cells. Oncoimmunology. 5:e10836722015. View Article : Google Scholar : PubMed/NCBI | |
Ahmad Munir S, Martinenaite E, Hansen M, Junker N, Borch TH, Met Ö, Donia M, Svane IM and Andersen MH: PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncoimmunology. 5:e12023912016. View Article : Google Scholar : PubMed/NCBI | |
Markman JL and Shiao SL: Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol. 6:208–223. 2015.PubMed/NCBI | |
Sun Q, Burton RL and Lucas KG: Cytokine production and cytolytic mechanism of CD4(+) cytotoxic T lymphocytes in ex vivo expanded therapeutic Epstein-Barr virus-specific T-cell cultures. Blood. 99:3302–3309. 2002. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Cheng Y, Shapiro J and McElwee K: The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol. 11:1335–1351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lemke H: Antigen receptor-intrinsic non-self: The key to understanding regulatory lymphocyte-mediated idiotypic control of adaptive immune responses. Crit Rev Immunol. 36:13–56. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plasilova M, Risitano A and Maciejewski JP: Application of the molecular analysis of the T-cell receptor repertoire in the study of immune-mediated hematologic diseases. Hematology. 8:173–181. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Pedrera C, Perez-Sanchez C, Ramos-Casals M, Santos-Gonzalez M, Rodriguez-Ariza A and Cuadrado MJ: Cardiovascular risk in systemic autoimmune diseases: Epigenetic mechanisms of immune regulatory functions. Clin Dev Immunol. 2012:9746482012. View Article : Google Scholar : PubMed/NCBI | |
Amaya-Amaya J, Montoya-Sanchez L and Rojas-Villarraga A: Cardiovascular involvement in autoimmune diseases. Biomed Res Int. 2014:3673592014. View Article : Google Scholar : PubMed/NCBI | |
Michelsen SW, Soborg B, Diaz LJ, Hoff ST, Agger EM, Koch A, Rosenkrands I, Wohlfahrt J and Melbye M: The dynamics of immune responses to Mycobacterium tuberculosis during different stages of natural infection: A longitudinal study among Greenlanders. PLoS One. 12:e01779062017. View Article : Google Scholar : PubMed/NCBI | |
Hunniger K, Lehnert T, Bieber K, Martin R, Figge MT and Kurzai O: A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput Biol. 10:e10034792014. View Article : Google Scholar : PubMed/NCBI | |
Gounder K, Padayachi N, Mann JK, Radebe M, Mokgoro M, van der Stok M, Mkhize L, Mncube Z, Jaggernath M, Reddy T, et al: High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection. PLoS One. 10:e01198862015. View Article : Google Scholar : PubMed/NCBI | |
Huang SS, Banner D, Degousee N, Leon AJ, Xu L, Paquette SG, Kanagasabai T, Fang Y, Rubino S, Rubin B, et al: Differential pathological and immune responses in newly weaned ferrets are associated with a mild clinical outcome of pandemic 2009 H1N1 infection. J Virol. 86:13187–13201. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bourke CD, Maizels RM and Mutapi F: Acquired immune heterogeneity and its sources in human helminth infection. Parasitology. 138:139–159. 2011. View Article : Google Scholar : PubMed/NCBI | |
Furman D and Davis MM: New approaches to understanding the immune response to vaccination and infection. Vaccine. 33:5271–5281. 2015. View Article : Google Scholar : PubMed/NCBI | |
Redgrove KA and McLaughlin EA: The role of the immune response in chlamydia trachomatis infection of the male genital tract: A double-edged sword. Front Immunol. 5:5342014. View Article : Google Scholar : PubMed/NCBI | |
Kotzamanis K, Angulo A and Ghazal P: Infection homeostasis: Implications for therapeutic and immune programming of metabolism in controlling infection. Med Microbiol Immunol. 204:395–407. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gershon RK and Kondo K: Cell interactions in the induction of tolerance: The role of thymic lymphocytes. Immunology. 18:723–737. 1970.PubMed/NCBI | |
Afonina IS, Zhong Z, Karin M and Beyaert R: Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 18:861–869. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dinesh RK, Skaggs BJ, La Cava A, Hahn BH and Singh RP: CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun Rev. 9:560–568. 2010. View Article : Google Scholar : PubMed/NCBI | |
Emregul E, David A, Balthasar JP and Yang VC: A GPIIb/IIIa bioreactor for specific treatment of immune thrombocytopenic purpura, an autoimmune disease. Preparation, in vitro characterization, and preliminary proof-of-concept animal studies. J Biomed Mater Res A. 75:648–655. 2005. View Article : Google Scholar : PubMed/NCBI | |
Smith TR and Kumar V: Revival of CD8+ Treg-mediated suppression. Trends Immunol. 29:337–342. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Li G, Avella DM, Kimchi ET, Kaifi JT, Rubinstein MP, Camp ER, Rockey DC, Schell TD and Staveley-O'Carroll KF: Sunitinib represses regulatory T cells to overcome immunotolerance in a murine model of hepatocellular cancer. Oncoimmunology. 7:e13720792017. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S, Panda AK, Bose S, Roy D, Kajal K, Guha D and Sa G: Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Sci Rep. 7:16282017. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Wu J, Borillo J, Torres L, McMahon J and Lou YH: Potential roles of a special CD8 alpha alpha+ cell population and CC chemokine thymus-expressed chemokine in ovulation related inflammation. J Immunol. 182:596–603. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Maricic I, Purohit N, Bakamjian B, Reed-Loisel LM, Beeston T, Jensen P and Kumar V: Regulation of immunity by a novel population of Qa-1-restricted CD8alphaalpha+TCRalphabeta+ T cells. J Immunol. 177:7645–7655. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Shang S, Siddiqui S, Zhao J, Joosten SA, Ottenhoff THM, Cantor H and Wang CR: MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog. 13:e10063842017. View Article : Google Scholar : PubMed/NCBI | |
Takada K, Kondo K and Takahama Y: Generation of peptides that promote positive selection in the thymus. J Immunol. 198:2215–2222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ali Mohammed HH and Drela N: Role of thymic B cells in the development of thymus-derived regulatory T cell in vitro. Immunol Lett. 185:56–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
Talotta R, Atzeni F, Batticciotto A, Benucci M, Bongiovanni S and Sarzi-Puttini P: Biological agents in rheumatoid arthritis: A cross-link between immune tolerance and immune surveillance. Curr Rheumatol Rev. 2016.PubMed/NCBI | |
Huang G, Xu J, Lefever DE, Glenn TC, Nagy T and Guo TL: Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol. 332:138–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Capece T and Kim M: The role of lymphatic niches in T Cell Differentiation. Mol Cells. 39:515–523. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Li Z, Jiao Z, Gu P, Zhou Y, Lu L and Chou KY: A Trichosanthin-derived peptide suppresses type 1 immune responses by TLR2-dependent activation of CD8(+)CD28(-) Tregs. Clin Immunol. 153:277–287. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vuddamalay Y and van Meerwijk JP: CD28- and CD28lowCD8+ regulatory T cells: Of mice and men. Front Immunol. 8:312017. View Article : Google Scholar : PubMed/NCBI | |
Morimoto C, Takeuchi T and Schlossman SF: Characterization of the CD8+CD45R+(2H4+) suppressor effector cell. Clin Exp Rheumatol. 7 Suppl 3:S3–S7. 1989.PubMed/NCBI | |
Takeuchi T, Rudd CE, Tanaka S, Rothstein DM, Schlossman SF and Morimoto C: Functional characterization of the CD45R (2H4) molecule on CD8 (T8) cells in the autologous mixed lymphocyte reaction system. Eur J Immunol. 19:747–755. 1989. View Article : Google Scholar : PubMed/NCBI | |
Raziuddin S and Elawad ME: Immunoregulatory CD4+ CD45R+ suppressor/inducer T lymphocyte subsets and impaired cell-mediated immunity in patients with Down's syndrome. Clin Exp Immunol. 79:67–71. 1990. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P, Curiel T, Lange A and Zou W: Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. 65:5020–5026. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li S, Yang Y, Zhu S, Zhang M, Qiao Y, Liu YJ and Chen J: TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget. 8:11708–11718. 2017.PubMed/NCBI | |
Kourtzelis I and Rafail S: The dual role of complement in cancer and its implication in anti-tumor therapy. Ann Transl Med. 4:2652016. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Hasni MS, Jondal M and Yakimchuk K: Modification of anti-tumor immunity by tolerogenic dendritic cells. Autoimmunity. 50:370–376. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L: Adaptive Treg generation by DCs and their functional analysis. Methods Mol Biol. 595:403–412. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao JF, McIntyre MS, Juvet SC, Diao J, Li X, Vanama RB, Mak TW, Cattral MS and Zhang L: Regulation of antigen-expressing dendritic cells by double negative regulatory T cells. Eur J Immunol. 41:2699–2708. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suciu-Foca N, Manavalan JS, Scotto L, Kim-Schulze S, Galluzzo S, Naiyer AJ, Fan J, Vlad G and Cortesini R: Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells: Review. Int Immunopharmacol. 5:7–11. 2005. View Article : Google Scholar : PubMed/NCBI | |
Song ZY, Yamasaki R, Kawano Y, Sato S, Masaki K, Yoshimura S, Matsuse D, Murai H, Matsushita T and Kira J: Peripheral blood T cell dynamics predict relapse in multiple sclerosis patients on fingolimod. PLoS One. 10:e01249232015. View Article : Google Scholar : PubMed/NCBI | |
Hendrikx TK, Velthuis JH, Klepper M, van Gurp E, Geel A, Schoordijk W, Baan CC and Weimar W: Monotherapy rapamycin allows an increase of CD4 CD25 FoxP3 T cells in renal recipients. Transpl Int. 22:884–891. 2009. View Article : Google Scholar : PubMed/NCBI | |
Assadiasl S, Ahmadpoor P, Nafar M, Pezeshki Lessan M, Pourrezagholi F, Parvin M, Shahlaee A, Sepanjnia A, Nicknam MH and Amirzargar A: Regulatory T cell subtypes and TGF-beta1 gene expression in chronic allograft dysfunction. Iran J Immunol. 11:139–152. 2014.PubMed/NCBI | |
Negrini S, Fenoglio D, Parodi A, Kalli F, Battaglia F, Nasi G, Curto M, Tardito S, Ferrera F and Filaci G: Phenotypic alterations involved in CD8+ Treg impairment in systemic sclerosis. Front Immunol. 8:182017. View Article : Google Scholar : PubMed/NCBI | |
Velasquez-Lopera MM, Correa LA and Garcia LF: Human spleen contains different subsets of dendritic cells and regulatory T lymphocytes. Clin Exp Immunol. 154:107–114. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Jiao Z, Shao X, Lu L, Yang N, Zhou X, Xin L, Zhou Y and Chou KY: Phenotypic alterations of dendritic cells are involved in suppressive activity of trichosanthin-induced CD8+CD28- regulatory T cells. J Immunol. 185:79–88. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nikoueinejad H, Amirzargar A, Sarrafnejad A, Einollahi B, Nafar M, Ahmadpour P, Pour-Reze-Gholi F, Sehat O and Lesanpezeshki M: Dynamic changes of regulatory T cell and dendritic cell subsets in stable kidney transplant patients: A prospective analysis. Iran J Kidney Dis. 8:130–138. 2014.PubMed/NCBI | |
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF and Ramsdell F: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 27:68–73. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ochs HD, Ziegler SF and Torgerson TR: FOXP3 acts as a rheostat of the immune response. Immunol Rev. 203:156–164. 2005. View Article : Google Scholar : PubMed/NCBI | |
Niemz J, Kliche S, Pils MC, Morrison E, Manns A, Freund C, Crittenden JR, Graybiel AM, Galla M, Jänsch L, et al: The guanine-nucleotide exchange factor Caldag gefi fine-tunes functional properties of regulatory T cells. Eur J Microbiol Immunol (Bp). 7:112–126. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maranduba CM, De Castro SB, de Souza GT, Rossato C, da Guia FC, Valente MA, Rettore JV, Maranduba CP, de Souza CM, do Carmo AM, et al: Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis. J Immunol Res. 2015:9315742015. View Article : Google Scholar : PubMed/NCBI | |
Fontenot JD, Gavin MA and Rudensky AY: FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 4:330–336. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bin Dhuban K, Kornete M, Mason S E and Piccirillo CA: Functional dynamics of Foxp3+ regulatory T cells in mice and humans. Immunol Rev. 259:140–158. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Vanini V, Romagnani P, et al: Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 102:4107–4114. 2003. View Article : Google Scholar : PubMed/NCBI | |
Maslanka T, Ziolkowska N, Ziolkowski H and Malaczewska J: CD25+CD127+Foxp3- cells represent a major subpopulation of CD8+ T cells in the eye chambers of normal mice. PLoS One. 12:e01700212017. View Article : Google Scholar : PubMed/NCBI | |
Jun C, Ke W, Qingshu L, Ping L, Jun D, Jie L, Bo C and Su M: Protective effect of CD4(+)CD25(high)CD127(low) regulatory T cells in renal ischemia-reperfusion injury. Cell Immunol. 289:106–111. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su H, Longhi MS, Wang P, Vergani D and Ma Y: Human CD4+CD25(high)CD127 (low/neg) regulatory T cells. Methods Mol Biol. 806:287–299. 2012. View Article : Google Scholar : PubMed/NCBI | |
Simonetta F, Chiali A, Cordier C, Urrutia A, Girault I, Bloquet S, Tanchot C and Bourgeois C: Increased CD127 expression on activated FOXP3+CD4+ regulatory T cells. Eur J Immunol. 40:2528–2538. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Perea AL, Arcia ED, Rueda CM and Velilla PA: Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol. 185:281–291. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang HY, Yan KX, Huang Q, Ma Y, Fang X and Han L: Target tissue ectoenzyme CD39/CD73-expressing Foxp3+ regulatory T cells in patients with psoriasis. Clin Exp Dermatol. 40:182–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Allard B, Longhi MS, Robson SC and Stagg J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 276:121–144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bono MR, Fernandez D, Flores-Santibanez F, Rosemblatt M and Sauma D: CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Lett. 589:3454–3460. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matyash M, Zabiegalov O, Wendt S, Matyash V and Kettenmann H: The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One. 12:e01750122017. View Article : Google Scholar : PubMed/NCBI | |
Hasan D, Blankman P and Nieman GF: Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal. 13:363–386. 2017. View Article : Google Scholar : PubMed/NCBI | |
Drakes ML and Stiff PJ: Harnessing immunosurveillance: Current developments and future directions in cancer immunotherapy. Immunotargets Ther. 3:151–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stallone G, Infante B, Di Lorenzo A, Rascio F, Zaza G and Grandaliano G: mTOR inhibitors effects on regulatory T cells and on dendritic cells. J Transl Med. 14:1522016. View Article : Google Scholar : PubMed/NCBI | |
Oberg HH, Juricke M, Kabelitz D and Wesch D: Regulation of T cell activation by TLR ligands. Eur J Cell Biol. 90:582–592. 2011. View Article : Google Scholar : PubMed/NCBI | |
Su J, Xie Q, Xu Y, Li XC and Dai Z: Role of CD8(+) regulatory T cells in organ transplantation. Burns Trauma. 2:18–23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ferguson AR and Engelhard VH: CD8 T cells activated in distinct lymphoid organs differentially express adhesion proteins and coexpress multiple chemokine receptors. J Immunol. 184:4079–4086. 2010. View Article : Google Scholar : PubMed/NCBI | |
Croft M and Siegel RM: Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat Rev Rheumatol. 13:217–233. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G and Suciu-Foca N: Molecular and cellular characterization of human CD8 T suppressor cells. Front Immunol. 7:5492016. View Article : Google Scholar : PubMed/NCBI | |
Parkes MD, Halloran PF and Hidalgo LG: Mechanistic sharing between NK cells in ABMR and effector T cells in TCMR. Am J Transplant. 18:63–73. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nagy E, Lei Y, Martinez-Martinez E, Body SC, Schlotter F, Creager M, Assmann A, Khabbaz K, Libby P, Hansson GK, et al: Interferon-gamma released by activated CD8+ T lymphocytes impairs the calcium resorption potential of osteoclasts in calcified human aortic valves. Am J Pathol. 187:1413–1425. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa H, Kawahata K, Mizoguchi F, Okiyama N, Miyasaka N and Kohsaka H: Direct suppression of autoaggressive CD8+ T cells with CD80/86 blockade in CD8+ T cell-mediated polymyositis models of mice. Clin Exp Rheumatol. 35:593–597. 2017.PubMed/NCBI | |
Nejad Beyranvand E, van der Sluis TC, van Duikeren S, Yagita H, Janssen GM, van Veelen PA, Melief CJ, van der Burg SH and Arens R: Tumor eradication by cisplatin is sustained by CD80/86-mediated costimulation of CD8+ T cells. Cancer Res. 76:6017–6029. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pierini A, Schneidawind D, Nishikii H and Negrin RS: Regulatory T cell immunotherapy in immune-mediated diseases. Curr Stem Cell Rep. 1:177–186. 2015. View Article : Google Scholar : PubMed/NCBI | |
Long SA, Thorpe J, DeBerg HA, Gersuk V, Eddy J, Harris KM, Ehlers M, Herold KC, Nepom GT and Linsley PS: Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci Immunol. 1:pii: eaai7793. 2016. View Article : Google Scholar : PubMed/NCBI | |
Joosten SA, Sullivan LC and Ottenhoff TH: Characteristics of HLA-E restricted T-cell responses and their role in infectious diseases. J Immunol Res. 2016:26953962016. View Article : Google Scholar : PubMed/NCBI | |
Varthaman A, Clement M, Khallou-Laschet J, Fornasa G, Gaston AT, Dussiot M, Caligiuri G, Cantor H, Kaveri S and Nicoletti A: Physiological induction of regulatory Qa-1-restricted CD8+ T cells triggered by endogenous CD4+ T cell responses. PLoS One. 6:e216282011. View Article : Google Scholar : PubMed/NCBI | |
Sinha S, Itani FR and Karandikar NJ: Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Res. 59:254–265. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leavenworth JW, Tang X, Kim HJ, Wang X and Cantor H: Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells. J Clin Invest. 123:1382–1389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kambayashi T, Kraft-Leavy JR, Dauner JG, Sullivan BA, Laur O and Jensen PE: The nonclassical MHC class I molecule Qa-1 forms unstable peptide complexes. J Immunol. 172:1661–1669. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang H: The Qa-1 dependent CD8+ T cell mediated regulatory pathway. Cell Mol Immunol. 2:161–167. 2005.PubMed/NCBI | |
Chen L, Reyes-Vargas E, Dai H, Escobar H, Rudd B, Fairbanks J, Ho A, Cusick MF, Kumánovics A, Delgado J, et al: Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity. J Immunol. 193:1427–1439. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jensen PE, Sullivan BA, Reed-Loisel LM and Weber DA: Qa-1, a nonclassical class I histocompatibility molecule with roles in innate and adaptive immunity. Immunol Res. 29:81–92. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ramsingh AI, Manley K, Rong Y, Reilly A and Messer A: Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington's disease. Hum Mol Genet. 24:6186–6197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shiina T, Blancher A, Inoko H and Kulski JK: Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology. 150:127–138. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiswick EL, Mella JR, Bernardo J and Remick DG: Acute-phase deaths from murine polymicrobial sepsis are characterized by innate immune suppression rather than exhaustion. J Immunol. 195:3793–3802. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Leary S, Lloyd ML, Shellam GR and Robertson SA: Immunization with recombinant murine cytomegalovirus expressing murine zona pellucida 3 causes permanent infertility in BALB/c mice due to follicle depletion and ovulation failure. Biol Reprod. 79:849–860. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheng MH and Nelson LM: Mechanisms and models of immune tolerance breakdown in the ovary. Semin Reprod Med. 29:308–316. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li XL, Menoret S, Bezie S, Caron L, Chabannes D, Hill M, Halary F, Angin M, Heslan M, Usal C, et al: Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J Immunol. 185:823–833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nambu Y, Hayashi T, Jang KJ, Aoki K, Mano H, Nakano K, Osato M, Takahashi K, Itoh K, Teramukai S, et al: In situ differentiation of CD8αα T cells from CD4 T cells in peripheral lymphoid tissues. Sci Rep. 2:6422012. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Maricic I and Kumar V: Anti-TCR antibody treatment activates a novel population of nonintestinal CD8 alpha alpha+ TCR alpha beta+ regulatory T cells and prevents experimental autoimmune encephalomyelitis. J Immunol. 178:6043–6050. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kumar V and Sercarz E: An integrative model of regulation centered on recognition of TCR peptide/MHC complexes. Immunol Rev. 182:113–121. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ge PL, Ma LP, Wang W, Li Y and Zhao WM: Inhibition of collagen-induced arthritis by DNA vaccines encoding TCR Vbeta5.2 and TCR Vbeta8.2. Chin Med J (Engl). 122:1039–1048. 2009.PubMed/NCBI | |
Xu H, Wang X, Malam N, Aye PP, Alvarez X, Lackner AA and Veazey RS: Persistent simian immunodeficiency virus infection drives differentiation, aberrant accumulation, and latent infection of germinal center follicular T helper cells. J Virol. 90:1578–1587. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bruno F, Fornara C, Zelini P, Furione M, Carrara E, Scaramuzzi L, Cane I, Mele F, Sallusto F, Lilleri D, et al: Follicular helper T-cells and virus-specific antibody response in primary and reactivated human cytomegalovirus infections of the immunocompetent and immunocompromised transplant patients. J Gen Virol. 97:1928–1941. 2016. View Article : Google Scholar : PubMed/NCBI | |
Muema DM, Macharia GN, Olusola BA, Hassan AS, Fegan GW, Berkley JA, Urban BC and Nduati EW: Proportions of circulating follicular helper T cells are reduced and correlate with memory B cells in HIV-infected children. PLoS One. 12:e01755702017. View Article : Google Scholar : PubMed/NCBI | |
Sugimoto T and Watanabe T: Follicular Lymphoma: The role of the tumor microenvironment in prognosis. J Clin Exp Hematop. 56:1–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kurita D, Miyoshi H, Yoshida N, Sasaki Y, Kato S, Niino D, Sugita Y, Hatta Y, Takei M, Makishima M, et al: A clinicopathologic study of lennert lymphoma and possible prognostic factors: the importance of follicular helper T-cell markers and the association with angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 40:1249–1260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miles B, Miller SM, Folkvord JM, Levy DN, Rakasz EG, Skinner PJ and Connick E: Follicular regulatory CD8 T cells impair the germinal center response in SIV and ex vivo HIV infection. PLoS Pathog. 12:e10059242016. View Article : Google Scholar : PubMed/NCBI | |
Tsai S, Clemente-Casares X and Santamaria P: CD8(+) Tregs in autoimmunity: Learning ‘self’-control from experience. Cell Mol Life Sci. 68:3781–3795. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krausz LT, Major ZZ, Muresanu DF, Chelaru E, Nocentini G and Riccardi C: Characterization of CD4+ and CD8+ Tregs in a Hodgkin's lymphoma patient presenting with myasthenia-like symptoms. Ideggyogy Sz. 66:343–348. 2013.PubMed/NCBI | |
Spadaro M, Montarolo F, Perga S, Martire S, Brescia F, Malucchi S and Bertolotto A: Biological activity of glatiramer acetate on Treg and anti-inflammatory monocytes persists for more than 10 years in responder multiple sclerosis patients. Clin Immunol. 181:83–88. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Nierop GP, van Luijn MM, Michels SS, Melief MJ, Janssen M, Langerak AW, Ouwendijk WJD, Hintzen RQ and Verjans GMGM: Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 134:383–401. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rådinger M, Bossios A, Alm AS, Jeurink P, Lu Y, Malmhäll C, Sjöstrand M and Lötvall J: Regulation of allergen-induced bone marrow eosinophilopoiesis: Role of CD4+ and CD8+ T cells. Allergy. 62:1410–1418. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kong H, Zeng X, Guo L, Sun X and He S: Subsets of regulatory T cells and their roles in allergy. J Transl Med. 12:1252014. View Article : Google Scholar : PubMed/NCBI | |
Martin-Orozco E, Norte-Munoz M and Martinez-Garcia J: Regulatory T cells in allergy and asthma. Front Pediatr. 5:1172017. View Article : Google Scholar : PubMed/NCBI | |
Tulunay A, Yavuz S, Direskeneli H and Eksioglu-Demiralp E: CD8+CD28-, suppressive T cells in systemic lupus erythematosus. Lupus. 17:630–637. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zabinska M, Krajewska M, Koscielska-Kasprzak K and Klinger M: CD3(+)CD8(+)CD28(-) T lymphocytes in patients with lupus nephritis. J Immunol Res. 2016:10581652016. View Article : Google Scholar : PubMed/NCBI | |
Ceeraz S, Hall C, Choy EH, Spencer J and Corrigall VM: Defective CD8+CD28+ regulatory T cell suppressor function in rheumatoid arthritis is restored by tumour necrosis factor inhibitor therapy. Clin Exp Immunol. 174:18–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, Belobradkova J, Dite P and Michalek J: Numerical defects in CD8+CD28- T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol. 262:75–79. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arosa FA: CD8+CD28- T cells: Certainties and uncertainties of a prevalent human T-cell subset. Immunol Cell Biol. 80:1–13. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sfanos KS and De Marzo AM: Prostate cancer and inflammation: The evidence. Histopathology. 60:199–215. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mhawech-Fauceglia P, Wang D, Ali L, Lele S, Huba MA, Liu S and Odunsi K: Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. Cancer Immun. 13:12013.PubMed/NCBI | |
Longoria TC and Tewari KS: Pharmacologic management of advanced cervical cancer: Antiangiogenesis therapy and immunotherapeutic considerations. Drugs. 75:1853–1865. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang Y, Zeng Q, Zeng YQ, Liang CL, Qiu F, Nie H and Dai Z: Suppression of allograft rejection by CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget. 8:24187–24195. 2017.PubMed/NCBI | |
Beres AJ, Haribhai D, Chadwick AC, Gonyo PJ, Williams CB and Drobyski WR: CD8+ Foxp3+ regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J Immunol. 189:464–474. 2012. View Article : Google Scholar : PubMed/NCBI |