1
|
Bretz N, Noske A, Keller S, Erbe-Hofmann
N, Schlange T, Salnikov AV, Moldenhauer G, Kristiansen G and
Altevogt P: CD24 promotes tumor cell invasion by suppressing tissue
factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion.
Clin Exp Metastasis. 29:27–38. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Keeratichamroen S, Leelawat K, Thongtawee
T, Narong S, Aegem U, Tujinda S, Praditphol N and Tohtong R:
Expression of CD24 in cholangiocarcinoma cells is associated with
disease progression and reduced patient survival. Int J Oncol.
39:873–881. 2011.PubMed/NCBI
|
3
|
Agrawal S, Kuvshinoff BW, Khoury T, Yu J,
Javle MM, LeVea C, Groth J, Coignet LJ and Gibbs JF: CD24
expression is an independent prognostic marker in
cholangiocarcinoma. J Gastrointest Surg. 11:445–451. 2007.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kwon MJ, Han J, Seo JH, Song K, Jeong HM,
Choi JS, Kim YJ, Lee SH, Choi YL and Shin YK: CD24 overexpression
is associated with poor prognosis in luminal A and triple-negative
breast cancer. PLoS One. 10:e1391122015. View Article : Google Scholar
|
5
|
Tang MR, Wang YX, Guo S, Han SY, Li HH and
Jin SF: CD24 expression predicts poor prognosis for patients with
cutaneous malignant melanoma. Int J Clin Exp Med. 7:4337–4341.
2014.PubMed/NCBI
|
6
|
Wu JX, Zhao YY, Wu X and An HX:
Clinicopathological and prognostic significance of CD24
overexpression in patients with gastric cancer: A meta-analysis.
PLoS One. 9:e1147462014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tanaka T, Terai Y, Kogata Y, Ashihara K,
Maeda K, Fujiwara S, Yoo S, Tanaka Y, Tsunetoh S, Sasaki H, et al:
CD24 expression as a marker for predicting clinical outcome and
invasive activity in uterine cervical cancer. Oncol Rep.
34:2282–2288. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Overdevest JB, Thomas S, Kristiansen G,
Hansel DE, Smith SC and Theodorescu D: CD24 offers a therapeutic
target for control of bladder cancer metastasis based on a
requirement for lung colonization. Cancer Res. 71:3802–3811. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Sagiv E, Starr A, Rozovski U, Khosravi R,
Altevogt P, Wang T and Arber N: Targeting CD24 for treatment of
colorectal and pancreatic cancer by monoclonal antibodies or small
interfering RNA. Cancer Res. 68:2803–2812. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Smith SC, Oxford G, Wu Z, Nitz MD, Conaway
M, Frierson HF, Hampton G and Theodorescu D: The
metastasis-associated gene CD24 is regulated by Ral GTPase and is a
mediator of cell proliferation and survival in human cancer. Cancer
Res. 66:1917–1922. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Su D, Deng H, Zhao X, Zhang X, Chen L,
Chen X, Li Z, Bai Y, Wang Y, Zhong Q, et al: Targeting CD24 for
treatment of ovarian cancer by short hairpin RNA. Cytotherapy.
11:642–652. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Suyama K, Onishi H, Imaizumi A, Shinkai K,
Umebayashi M, Kubo M, Mizuuchi Y, Oda Y, Tanaka M, Nakamura M and
Katano M: CD24 suppresses malignant phenotype by downregulation of
SHH transcription through STAT1 inhibition in breast cancer cells.
Cancer Lett. 374:44–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ke J, Wu X, Wu X, He X, Lian L, Zou Y, He
X, Wang H, Luo Y, Wang L and Lan P: A subpopulation of CD24 cells
in colon cancer cell lines possess stem cell characteristics.
Neoplasma. 59:282–288. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Salnikov AV, Bretz NP, Perne C, Hazin J,
Keller S, Fogel M, Herr I, Schlange T, Moldenhauer G and Altevogt
P: Antibody targeting of CD24 efficiently retards growth and
influences cytokine milieu in experimental carcinomas. Br J Cancer.
108:1449–1459. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Parker AL, Turner N, McCarroll JA and
Kavallaris M: βIII-tubulin alters glucose metabolism and stress
response signaling to promote cell survival and proliferation in
glucose-starved non-small cell lung cancer cells. Carcinogenesis.
37:787–798. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zoni E, Chen L, Karkampouna S, Granchi Z,
Verhoef EI, La Manna F, Kelber J, Pelger RCM, Henry MD,
Snaar-Jagalska E, et al: CRIPTO and its signaling partner GRP78
drive the metastatic phenotype in human osteotropic prostate
cancer. Oncogene. 17:4739–4749. 2017. View Article : Google Scholar
|
17
|
Ogawa H, Kaira K, Takahashi K, Shimizu A,
Altan B, Yoshinari D, Asao T and Oyama T: Prognostic role of
BiP/GRP78 expression as ER stress in patients with gastric
adenocarcinoma. Cancer Biomark. 7:273–281. 2017. View Article : Google Scholar
|
18
|
Kawiak A, Domachowska A, Jaworska A and
Lojkowska E: Plumbagin sensitizes breast cancer cells to
tamoxifen-induced cell death through GRP78 inhibition and Bik
upregulation. Sci Rep. 13:437812017. View Article : Google Scholar
|
19
|
Lizardo MM, Morrow JJ, Miller TE, Hong ES,
Ren L, Mendoza A, Halsey CH, Scacheri PC, Helman LJ and Khanna C:
Upregulation of glucose-regulated protein 78 in metastatic cancer
cells is necessary for lung metastasis progression. Neoplasia.
28:699–710. 2016. View Article : Google Scholar
|
20
|
Gonzalez-Gronow M, Selim MA, Papalas J and
Pizzo SV: GRP78: A multifunctional receptor on the cell surface.
Antioxid Redox Signal. 11:2299–2306. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang M, Wey S, Zhang Y, Ye R and Lee AS:
Role of the unfolded protein response regulator GRP78/BiP in
development, cancer, and neurological disorders. Antioxid Redox
Signal. 11:2307–2316. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rauschert N, Ndlein SB, Holzinger E,
Hensel F, Müller-Hermelink HK and Vollmers HP: A new tumor-specific
variant of GRP78 as target for antibody-based therapy. Lab Invest.
88:375–386. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Papalas JA, Vollmer RT, Gonzalezgronow M,
Pizzo SV, Burchette J, Youens KE, Johnson KB and Selim MA: Patterns
of GRP78 and MTJ1 expression in primary cutaneous malignant
melanoma. Mod Pathol. 23:134–143. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fu W, Wu X, Li J, Mo Z, Yang Z, Huang W
and Ding Q: Upregulation of GRP78 in renal cell carcinoma and its
significance. Urology. 75:603–607. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xia YZ, Yang L, Xue GM, Zhang C, Guo C,
Yang YW, Li SS, Zhang LY, Guo QL and Kong LY: Combining GRP78
suppression and MK2206-induced Akt inhibition decreases
doxorubicin-induced P-glycoprotein expression and mitigates
chemoresistance in human osteosarcoma. Oncotarget. 7:56371–56382.
2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yerlikaya A, Erdogan E, Okur E, Yerlikaya
S and Savran B: A novel combination treatment for breast cancer
cells involving BAPTA-AM and proteasome inhibitor bortezomib. Oncol
Lett. 12:323–330. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kong DH, Zhang Q, Meng X, Zong ZH, Li C,
Liu BQ, Guan Y and Wang HQ: BAG3 sensitizes cancer cells exposed to
DNA damaging agents via direct interaction with GRP78. Biochim
Biophys Acta. 1833:3245–3253. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Golden EB, Cho HY, Jahanian A, Hofman FM,
Louie SG, Schönthal AH and Chen TC: Chloroquine enhances
temozolomide cytotoxicity in malignant gliomas by blocking
autophagy. Neurosurg Focus. 37:E122014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Luvsandagva B, Nakamura K, Kitahara Y,
Aoki H, Murata T, Ikeda S and Minegishi T: GRP78 induced by
estrogen plays a role in the chemosensitivity of endometrial
cancer. Gynecol Oncol. 126:132–139. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gifford JB and Hill R: GRP78 influences
chemoresistance and prognosis in cancer. Curr Drug Targets. Jun
15–2017.(Epub ahead of print).
|
31
|
Soni P, Qayoom S, Husain N, Kumar P,
Chandra A, Ojha BK and Gupta RK: CD24 and nanog expression in stem
cells in glioblastoma: Correlation with response to chemoradiation
and overall survival. Asian Pac J Cancer Prev. 18:2215–2219.
2017.PubMed/NCBI
|
32
|
Kristiansen G, Machado E, Bretz N, Rupp C,
Winzer KJ, König AK, Moldenhauer G, Marmé F, Costa J and Altevogt
P: Molecular and clinical dissection of CD24 antibody specificity
by a comprehensive comparative analysis. Lab Invest. 90:1102–1116.
2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang X, Zhang Y, Zhao Y, Liang Y, Xiang C,
Zhou H, Zhang H, Zhang Q, Qing H, Jiang B, et al: CD24 promoted
cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signalling
pathway in colorectal cancer. Oncotarget. 7:55663–55676.
2016.PubMed/NCBI
|
34
|
Huang YN, Guo X, You LP, Wang CJ, Liu JQ
and Li YL: Lysosome-associated protein transmembrane4β is involved
in multidrug resistance processes of colorectal cancer. Oncol Lett.
14:5229–5234. 2017.PubMed/NCBI
|