1
|
Van Oosten B and Harroun TA: A MARTINI
extension for Pseudomonas aeruginosa PAO1 lipopolysaccharide. J Mol
Graph Model. 63:125–133. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Alshalchi SA and Anderson GG: Expression
of the lipopolysaccharide biosynthesis gene lpxD affects biofilm
formation of Pseudomonas aeruginosa. Arch Microbiol. 197:135–145.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bollati M, Villa R, Gourlay LJ, Benedet M,
Dehò G, Polissi A, Barbiroli A, Martorana AM, Sperandeo P,
Bolognesi M and Nardini M: Crystal structure of LptH, the
periplasmic component of the lipopolysaccharide transport machinery
from Pseudomonas aeruginosa. FEBS J. 282:1980–1997. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hao Y, Murphy K, Lo RY, Khursigara CM and
Lam JS: Single-nucleotide polymorphisms found in the migA and wbpX
Glycosyltransferase genes account for the intrinsic
lipopolysaccharide defects exhibited by pseudomonas aeruginosa
PA14. J Bacteriol. 197:2780–2791. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ruhal R, Antti H, Rzhepishevska O,
Boulanger N, Barbero DR, Wai SN, Uhlin BE and Ramstedt M: A
multivariate approach to correlate bacterial surface properties to
biofilm formation by lipopolysaccharide mutants of Pseudomonas
aeruginosa. Colloids Surf B Biointerfaces. 127:182–191. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sardar RK, Kavita K and Jha B:
Lipopolysaccharide of Marinobacter litoralis inhibits swarming
motility and biofilm formation in Pseudomonas aeruginosa PA01.
Carbohydr Polym. 123:468–475. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Z, Qin B, Qi X, Mao J and Wu D:
Isoalantolactone induces apoptosis in human breast cancer cells via
ROS-mediated mitochondrial pathway and downregulation of SIRT1.
Arch Pharm Res. 39:1441–1453. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Suzuki M, Bandoski C and Bartlett JD:
Fluoride induces oxidative damage and SIRT1/autophagy through
ROS-mediated JNK signaling. Free Radic Biol Med. 89:369–378. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang T, Gu J, Wu PF, Wang F, Xiong Z, Yang
YJ, Wu WN, Dong LD and Chen JG: Protection by tetrahydroxystilbene
glucoside against cerebral ischemia: Involvement of JNK, SIRT1 and
NF-kappaB pathways and inhibition of intracellular ROS/RNS
generation. Free Radic Biol Med. 47:229–240. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xie Y, Tu W, Zhang J, He M, Ye S, Dong C
and Shao C: SirT1 knockdown potentiates radiation-induced bystander
effect through promoting c-Myc activity and thus facilitating ROS
accumulation. Mutat Res. 772:23–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao S
and Cui GH: Effects of gambogic acid on the activation of caspase-3
and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via
the accumulation of ROS. Oncol Lett. 3:1159–1165. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou Y, Chen X, Yi R, Li G, Sun P, Qian Y
and Zhao X: Immunomodulatory effect of tremella polysaccharides
against cyclophosphamide-induced immunosuppression in mice.
Molecules. 23:E2392018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Du XJ, Zhang JS, Yang Y, Tang QJ, Jia W
and Pan YJ: Purification, chemical modification and
immunostimulating activity of polysaccharides from Tremella
aurantialba fruit bodies. J Zhejiang Univ Sci B. 11:437–442. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Khondka P: Composition and partial
structure characterization of tremella polysaccharides.
Mycobiology. 37:286–294. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jin Y, Hu X, Zhang Y and Liu T: Studies on
the purification of polysaccharides separated from Tremella
fuciformis and their neuroprotective effect. Mol Med Rep.
13:3985–3992. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dong Y, Bao C, Yu J and Liu X:
Receptor-interacting protein kinase 3-mediated programmed cell
necrosis in rats subjected to focal cerebral ischemia-reperfusion
injury. Mol Med Rep. 14:728–736. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Biedenbach DJ, Giao PT, Van Hung P, Su
Minh Tuyet N, Thi Thanh Nga T, Phuong DM, Trung Vu N and Badal RE:
Antimicrobial-resistant pseudomonas aeruginosa and acinetobacter
baumannii from patients with hospital-acquired or
ventilator-associated pneumonia in vietnam. Clin Ther.
38:2098–2105. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li Y, Qu HP, Liu JL and Wan HY:
Correlation between group behavior and quorum sensing in
Pseudomonas aeruginosa isolated from patients with
hospital-acquired pneumonia. J Thorac Dis. 6:810–817.
2014.PubMed/NCBI
|
19
|
Fujii A, Seki M, Higashiguchi M, Tachibana
I, Kumanogoh A and Tomono K: Community-acquired, hospital-acquired
and healthcare-associated pneumonia caused by Pseudomonas
aeruginosa. Respir Med Case Rep. 12:30–33. 2014.PubMed/NCBI
|
20
|
Furtado GH, Gales AC, Perdiz LB, Santos
AE, Wey SB and Medeiros EA: Risk factors for hospital-acquired
pneumonia caused by imipenem-resistant Pseudomonas aeruginosa in an
intensive care unit. Anaesth Intensive Care. 38:994–1001.
2010.PubMed/NCBI
|
21
|
Xu Y, Duan C, Kuang Z, Hao Y, Jeffries JL
and Lau GW: Pseudomonas aeruginosa pyocyanin activates
NRF2-ARE-mediated transcriptional response via the
ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary
epithelial cells. PLoS One. 8:e725282013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yan F, Li W, Jono H, Li Q, Zhang S, Li JD
and Shen H: Reactive oxygen species regulate Pseudomonas aeruginosa
lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH
oxidase-ROS-TGF-alpha signaling pathways in human airway epithelial
cells. Biochem Biophys Res Commun. 366:513–519. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zeng R, Chen Y, Zhao S and Cui GH:
Autophagy counteracts apoptosis in human multiple myeloma cells
exposed to oridonin in vitro via regulating intracellular ROS and
SIRT1. Acta Pharmacol Sin. 33:91–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Vaziri H, Dessain SK, Eaton Ng E, Imai SI,
Frye RA, Pandita TK, Guarente L and Weinberg RA: hSIR2 (SIRT1)
functions as an NAD-dependent p53 deacetylase. Cell. 107:149–159.
2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang ZC, Lian B, Huang DM and Cui FJ:
Compare activities on regulating lipid-metabolism and reducing
oxidative stress of diabetic rats of Tremella aurantialba broth's
extract (TBE) with its mycelia polysaccharides (TMP). J Food Sci.
74:H15–H21. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Khondkar P, Aidoo KE and Tester RF: Sugar
profile of extracellular polysaccharides from different Tremella
species. Int J Food Microbiol. 79:121–129. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kiho T, Morimoto H, Sakushima M, Usui S
and Ukai S: Polysaccharides in fungi. XXXV. Anti diabetic activity
of an acidic polysaccharide from the fruiting bodies of Tremella
aurantia. Biol Pharm Bull. 18:1627–1629. 1995. View Article : Google Scholar : PubMed/NCBI
|
28
|
Keta O, Bulat T, Golić I, Incerti S, Korać
A, Petrović I and Ristić-Fira A: The impact of autophagy on cell
death modalities in CRL-5876 lung adenocarcinoma cells after their
exposure to gamma-rays and/or erlotinib. Cell Biol Toxicol.
32:83–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ryter SW, Mizumura K and Choi AM: The
impact of autophagy on cell death modalities. Int J Cell Biol.
2014:5026762014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gump JM and Thorburn A: Autophagy and
apoptosis: What is the connection? Trends Cell Biol. 21:387–392.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Su M, Mei Y and Sinha S: Role of the
crosstalk between autophagy and apoptosis in cancer. J Oncol.
2013:1027352013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pattingre S, Bauvy C, Carpentier S, Levade
T, Levine B and Codogno P: Role of JNK1-dependent Bcl-2
phosphorylation in ceramide-induced macroautophagy. J Biol Chem.
284:2719–2728. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cao B, Li J, Zhou X, Juan J, Han K, Zhang
Z, Kong Y, Wang J and Mao X: Clioquinol induces pro-death autophagy
in leukemia and myeloma cells by disrupting the mTOR signaling
pathway. Sci Rep. 4:57492014. View Article : Google Scholar : PubMed/NCBI
|