1
|
Chi AC, Day TA and Neville BW: Oral cavity
and oropharyngeal squamous cell carcinoma-an update. CA Cancer J
Clin. 65:401–421. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Boy SC: Leukoplakia and erythroplakia of
the oral mucosa-a brief overview. SADJ. 67:558–560. 2012.PubMed/NCBI
|
4
|
van der Waal I, Schepman KP, van der Meij
EH and Smeele LE: Oral leukoplakia: A clinicopathological review.
Oral Oncol. 33:291–301. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Khanna KK and Jackson SP: DNA doublestrand
breaks: Signaling, repair and the cancer connection. Nat Genet.
27:247–254. 2001. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Peng A and Maller JL: Serine/threonine
phosphatases in the DNA damage response and cancer. Oncogene.
29:5977–5988. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bartkova J, Horejsi Z, Koed K, Krämer A,
Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, et
al: DNA damage response as a candidate anti-cancer barrier in early
human tumorigenesis. Nature. 434:864–870. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gorgoulis VG, Vassiliou LV, Karakaidos P,
Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr,
Kastrinakis NG, Levy B, et al: Activation of the DNA damage
checkpoint and genomic instability in human precancerous lesions.
Nature. 434:907–913. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
He Y, Chen Q and Li B: ATM in oral
carcinogenesis: Association with clinicopathological features. J
Cancer Res Clin Oncol. 134:1013–1020. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Raynaud CM, Hernandez J, Llorca FP,
Nuciforo P, Mathieu MC, Commo F, Delaloge S, Sabatier L, André F
and Soria JC: DNA damage repair and telomere length in normal
breast, preneoplastic lesions, and invasive cancer. Am J Clin
Oncol. 33:341–345. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yuan J, Adamski R and Chen J: Focus on
histone variant H2AFX: To be or not to be. FEBS Lett.
584:3717–3724. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shiloh Y: ATM and related protein kinases:
Safeguarding genome integrity. Nat Rev Cancer. 3:155–168. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bartek J and Lukas J: Chk1 and CHEK2
kinases in checkpoint control and cancer. Cancer Cell. 3:421–429.
2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou BB and Elledge SJ: The DNA damage
response: Putting checkpoints in perspective. Nature. 408:433–439.
2000. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Peng CY, Graves PR, Thoma RS, Wu Z, Shaw
AS and Piwnica-Worms H: Mitotic and G2 checkpoint control:
Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C
on serine-216. Science. 277:1501–1505. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chang CC, Hung CM, Yang YR, Lee MJ and Hsu
YC: Sulforaphane induced cell cycle arrest in the G2/M phase via
the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J
Ovarian Res. 6:412013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Matthews TP, Jones AM and Collins I:
Structure-based design, discovery and development of checkpoint
kinase inhibitors as potential anticancer therapies. Expert Opin
Drug Discov. 8:621–640. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lantuejoul S, Raynaud C, Salameire D,
Gazzeri S, Moro-Sibilot D, Soria JC, Brambilla C and Brambilla E:
Telomere maintenance and DNA damage responses during lung
carcinogenesis. Clin Cancer Res. 16:2979–2988. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bonner WM, Redon CE, Dickey JS, Nakamura
AJ, Sedelnikova OA, Solier S and Pommier Y: GammaH2AFX and cancer.
Nat Rev Cancer. 8:957–967. 2008. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Rogakou EP, Boon C, Redon C and Bonner WM:
Megabase chromatin domains involved in DNA doublestrand breaks in
vivo. J Cell Biol. 146:905–916. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Warnakulasuriya S, Reibel J, Bouquot J and
Dabelsteen E: Oral epithelial dysplasia classification systems:
Predictive value, utility, weaknesses and scope for improvement. J
Oral Pathol Med. 37:127–133. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hu JL, Hu SS, Hou XX, Zhu X, Cao J, Jiang
LH and Ge MH: Abnormal expression of DNA Double-Strand breaks
related genes, ATM and GammaH2AFX, in thyroid carcinoma. Int J
Endocrinol. 2015:1368102015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Alkema NG, Tomar T, van der Zee AG, Everts
M, Meersma GJ, Hollema H, de Jong S, van Vugt MA and Wisman GB:
Checkpoint kinase 2 (Chek2) supports sensitivity to platinum-based
treatment in high grade serous ovarian cancer. Gynecol Oncol.
133:591–598. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bartkova J, Rezaei N, Liontos M,
Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E,
Niforou K, Zoumpourlis VC, et al: Oncogene-induced senescence is
part of the tumorigenesis barrier imposed by DNA damage
checkpoints. Nature. 444:633–637. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang YH, Li F, Luo B, Wang XH, Sun HC, Liu
S, Cui YQ and Xu XX: A side population of cells from a human
pancreatic carcinoma cell line harbors cancer stem cell
characteristics. Neoplasma. 56:371–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dou J, Wen P, Hu W, Li Y, Wu Y, Liu C,
Zhao F, Hu K, Wang J, Jiang C, et al: Identifying tumor stem-like
cells in mouse melanoma cell lines by analyzing the characteristics
of side population cells. Cell Biol Int. 33:807–815. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Takahashi A and Ohnishi T: Does gammaH2AFX
foci formation depend on the presence of DNA double strand breaks?
Cancer Lett. 229:171–179. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB,
Liu W, Qi Q, Lu N, Tao L, Wang XT, et al: Isolation and
characterization of cancer stem like cells in human glioblastoma
cell lines. Cancer Lett. 279:13–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wasco MJ and Pu RT: Utility of
antiphosphorylated H2AFX antibody (gamma-H2AFX) in diagnosing
metastatic renal cell carcinoma. Appl Immunohistochem Mol Morphol.
16:349–356. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mah LJ, El-Osta A and Karagiannis TC:
GammaH2AFX as a molecular marker of aging and disease. Epigenetics.
5:129–136. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Matthaios D, Foukas PG, Kefala M, Hountis
P, Trypsianis G, Panayiotides IG, Chatzaki E, Pantelidaki E, Bouros
D, Karakitsos P and Kakolyris S: γ-H2AFX expression detected by
immunohistochemistry correlates with prognosis in early operable
non-small cell lung cancer. Onco Targets Ther. 5:309–314. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Oliveira-Costa JP, Oliveira LR, Zanetti R,
Zanetti JS, da Silveira GG, Buim Chavichiolli ME, Zucoloto S,
Ribeiro-Silva A and Soares FA: BRCA1 and γH2AFX as independent
prognostic markers in oral squamous cell carcinoma. Oncoscience.
1:383–391. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chou SJ and Alawi F: Expression of DNA
damage response biomarkers during oral carcinogenesis. Oral Surg
Oral Med Oral Pathol Oral Radiol Endod. 111:346–353. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Inoue K, Fry EA and Taneja P: Recent
progress in mouse models for tumor suppressor genes and its
implications in human cancer. Clin Med Insights Oncol. 7:103–122.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sullivan A, Yuille M, Repellin C, Reddy A,
Reelfs O, Bell A, Dunne B, Gusterson BA, Osin P, Farrell PJ, et al:
Concomitant inactivation of p53 and Chek2 in breast cancer.
Oncogene. 21:1316–1324. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang P, Wang J, Gao W, Yuan BZ, Rogers J
and Reed E: CHEK2 kinase expression is down-regulated due to
promoter methylation in non-small cell lung cancer. Mol Cancer.
3:142004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kilpivaara O, Bartkova J, Eerola H,
Syrjäkoski K, Vahteristo P, Lukas J, Blomqvist C, Holli K, Heikkilä
P, Sauter G, et al: Correlation of CHEK2 protein expression and
c.1100delC mutation status with tumor characteristics among
unselected breast cancer patients. Int J Cancer. 113:575–580. 2005.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu W, Wu L, Shen XM, Shi LJ, Zhang CP, Xu
LQ and Zhou ZT: Expression patterns of cancer stem cell markers
ALDH1 and CD133 correlate with a high risk of malignant
transformation of oral leukoplakia. Int J Cancer. 132:868–874.
2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu W, Bao ZX, Shi LJ, Tang GY and Zhou
ZT: Malignant transformation of oral epithelial dysplasia:
Clinicopathological risk factors and outcome analysis in a
retrospective cohort of 138 cases. Histopathology. 59:733–740.
2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu W, Wang YF, Zhou HW, Shi P, Zhou ZT
and Tang GY: Malignant transformation of oral leukoplakia: A
retrospective cohort study of 218 Chinese patients. BMC Cancer.
10:6852010. View Article : Google Scholar : PubMed/NCBI
|