1
|
Krex D, Klink B, Hartmann C, von Deimling
A, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese O, Reifenberger
G, et al: Long-term survival with glioblastoma multiforme. Brain.
130:2596–2606. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Xiao B, Zhou X, Ye M, Lv S, Wu M, Liao C,
Han L, Kang C and Zhu X: MicroRNA-566 modulates vascular
endothelial growth factor by targeting Von Hippel-Landau in human
glioblastoma in vitro and in vivo. Mol Med Rep. 13:379–385. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lin FJ, Qin J, Tang K, Tsai SY and Tsai
MJ: Coup d'Etat: An orphan takes control. Endocr Rev. 32:404–421.
2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mi NL, Kim JW, Oh SH, Jeong BC, Hwang YC
and Koh JT: FGF2 stimulates COUP-TFII expression via the MEK1/2
pathway to inhibit osteoblast differentiation in C3H10T1/2 Cells.
PLoS One. 11:e01592342016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pereira FA, Tsai MJ and Tsai SY: COUP-TF
orphan nuclear receptors in development and differentiation. Cell
Mol Life Sci. 57:1388–1398. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eboli ML, Paradies G, Galeotti T and Papa
S: Pyruvate transport in tumour-cell mitochondria. Biochim Biophys
Acta. 460:183–187. 1977. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bricker DK, Taylor EB, Schell JC, Orsak T,
Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N,
et al: A mitochondrial pyruvate carrier required for pyruvate
uptake in yeast, Drosophila, and humans. Science. 337:96–100. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Herzig S, Raemy E, Montessuit S, Veuthey
JL, Zamboni N, Westermann B, Kunji ER and Martinou JC: Identi
cation and functional expression of the mitochondrial pyruvate
carrier. Science. 337:93–96. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang C, Ko B, Hensley CT, Jiang L, Wasti
AT, Kim J, Sudderth J, Calvaruso MA, Lumata L, Mitsche M, et al:
Glutamine oxidation maintains the TCA cycle and cell survival
during impaired mitochondrial pyruvate transport. Mol Cell.
56:414–424. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Herzig S, Raemy E, Montessuit S, Veuthey
JL, Zamboni N, Westermann B, Kunji ER and Martinou JC:
Identification and functional expression of the mitochondrial
pyruvate carrier. Science. 337:93–96. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schell J, Olson K, Jiang L, Hawkins AJ,
Van Vranken JG, Xie J, Egnatchik RA, Earl EG, DeBerardinis RJ and
Rutter J: A Role for the mitochondrial pyruvate carrier as a
repressor of the warburg effect and colon cancer cell growth. Mol
Cell. 56:400–413. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang L, Xu M, Qin J, Lin SC, Lee HJ, Tsai
SY and Tsai MJ: MPC1, a key gene in cancer metabolism, is regulated
by COUPTFII in human prostate cancer. Oncotarget. 7:14673–14683.
2016.PubMed/NCBI
|
15
|
Qin J, Wu SP, Creighton CJ, Dai F, Xie X,
Cheng CM, Frolov A, Ayala G, Lin X, Feng XH, Ittmann MM, et al:
COUP-TFII inhibits TGF-beta-induced growth barrier to promote
prostate tumorigenesis. Nature. 493:236–240. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Allen M, Bjerke M, Edlund H, Nelander S
and Westermark B: Origin of the U87MG glioma cell line: Good news
and bad news. Sci Transl Med. 8:354re32016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee S, Kang J, Yoo J, Ganesan SK, Cook SC,
Aguilar B, Ramu S, Lee J and Hong YK: Prox1 physically and
functionally interacts with COUP-TFII to specify lymphatic
endothelial cell fate. Blood. 113:1856–1859. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu SP, Yu CT, Tsai SY and Tsai MJ: Choose
your destiny: Make a cell fate decision with COUP-TFII. J Steroid
Biochem Mol Biol. 157:7–12. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu Z, Yu S, Hsu CH, Eguchi J and Rosen ED:
The orphan nuclear receptor chicken ovalbumin upstream
promoter-transcription factor II is a critical regulator of
adipogenesis. Proc Natl Acad Sci USA. 105:2421–2426. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Okamura M, Kudo H, Wakabayashi KI, Tanaka
T, Nonaka A, Uchida A, Tsutsumi S, Sakakibara I, Naito M, Osborne
TF, et al: COUP-TFII acts down-stream of Wnt/beta-catenin signal to
silence PPARgamma gene expression and repress adipogenesis. Proc
Natl Acad Sci USA. 106:5819–5824. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jeong BC, Kang IH, Hwang YC, Kim SH and
Koh JT: MicroRNA-194 reciprocally stimulates osteogenesis and
inhibits adipogenesis via regulating COUP-TFII expression. Cell
Death Dis. 5:e15322014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kang IH, Jeong BC, Hur SW, Choi H, Choi
SH, Ryu JH, Hwang YC and Koh JT: MicroRNA-302a stimulates
osteo-blastic differentiation by repressing COUP-TFII Expression. J
Cell Physiol. 230:911–921. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tsai SY and Tsai MJ: Chick ovalbumin
upstream pro-moter-transcription factors (COUP-TFs): Coming of age.
Endocr Rev. 18:229–240. 1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Trachtulec Z and Forejt J: Synteny of
orthologous genes conserved in mammals, snake, fly, nematode, and
ssion yeast. Mamm Genome. 12:227–231. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Vacanti NM, Divakaruni AS, Green CR,
Parker SJ, Henry RR, Ciaraldi TP, Murphy AN and Metallo CM:
Regulation of substrate utilization by the mitochondrial pyruvate
carrier. Mol Cell. 56:4252014. View Article : Google Scholar : PubMed/NCBI
|