1
|
Visvader JE and Lindeman GJ: Cancer stem
cells in solid tumours: Accumulating evidence and unresolved
questions: Nature Rev Cancer. 8:755–768. 2008.
|
2
|
Pece S, Tosoni D, Confalonieri S, Mazzarol
G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG and Di Fiore
PP: Biological and molecular heterogeneity of breast cancers
correlates with their cancer stem cell content. Cell. 140:62–73.
2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu R, Wang X, Chen GY, Dalerba P, Gurney
A, Hoey T, Sherlock G, Lewicki J, Shedden K and Clarke MF: The
prognostic role of a gene signature from tumorigenic breast-cancer
cells. N Engl J Med. 356:217–226. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu CG, Lu Y, Wang BB, Zhang YJ, Zhang RS,
Lu Y, Chen B, Xu H, Jin F and Lu P: Clinical implications of stem
cell gene Oct-4 expression in breast cancer. Ann Surg.
253:1165–1171. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Niwa HJ, Miyazaki J and Smith AG:
Quantitative expression of Oct-3/4 defines differentiation,
dedifferentiation or self-renewal of ES cells. Nat Genet.
24:372–376. 2000. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Okamoto K, Okazawa H, Okuda A, Sakai M,
Muramatsu M and Hamada H: A novel octamer binding transcription
factor is differentially expressed in mouse embryonic cells. Cell.
60:461–472. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Monsef N, Soller M, Isaksson M,
Abrahamsson PA and Panagopoulos I: The expression of pluripotency
marker Oct 3/4 in prostate cancer and benign prostate hyperplasia.
Prostate. 69:909–916. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Atlasi Y, Mowla SJ, Ziaee SA and Bahrami
AR: OCT-4, an embryonic stem cell marker, is highly expressed in
bladder cancer. Int J Cancer. 120:1598–1602. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ
and Andrews PW: OCT4 spliced variants are differentially expressed
in human pluripotent and nonpluripotent cells. Stem Cells.
26:3068–3074. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Papamichos SI, Kotoula V, Tarlatzis BC,
Agorastos T, Papazisis K and Lambropoulos AF: OCT4B1 isoform: The
novel OCT4 alternative spliced variant as a putative marker of
stemness. Mol Hum Reprod. 15:269–270. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang X and Dai J: Concise review: Isoforms
of OCT4 contribute to the confusing diversity in stem cell biology.
Stem Cells. 28:885–893. 2010.PubMed/NCBI
|
12
|
Lee J, Kim HK, Rho JY, Han YM and Kim J:
The human OCT-4 isoforms differ in their ability to confer
self-renewal. J Biol Chem. 281:33554–33565. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kotoula V, Papamichos SI and Lambropoulos
AF: Revisiting OCT4 expression in peripheral blood mononuclear
cells. Stem Cells. 26:290–291. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao Y, Wei J, Han J, Wang X, Su G, Zhao Y,
Chen B, Xiao Z, Cao J and Dai J: The novel function of OCT4B
isoform-265 in genotoxic stress. Stem Cells. 30:665–672. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Xing EP, Nie Y, Song Y, Yang GY, Cai YC,
Wang LD and Yang CS: Mechanisms of inactivation of p14ARF,
p15INK4b, and p16INK4a genes in human esophageal squamous cell
carcinoma. Clin Cancer Res. 5:2704–2713. 1999.PubMed/NCBI
|
16
|
Li J, Poi MJ and Tsai MD: Regulatory
mechanisms of tumor suppressor P16(INK4A) and their relevance to
cancer. Biochemistry. 50:5566–5582. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sherr CJ: Autophagy by ARF: A short story.
Mol Cell. 22:436–437. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sherr CJ: Divorcing ARF and p53: An
unsettled case. Nat Rev Cancer. 6:663–673. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Agrawal A, Yang J, Murphy RF and Agrawal
DK: Regulation of the p14ARF-Mdm2-p53 pathway: An overview in
breast cancer. Exp Mol Pathol. 81:115–122. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fisher DE: The p53 tumor suppressor:
critical regulator of life & death in cancer. Apoptosis.
6:7–15. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Haupt S, Berger M, Goldberg Z and Haupt Y:
Apoptosis-the p53 network. J Cell Sci. 116:4077–4085. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chipuk JE, Kuwana T, Bouchier-Hayes L,
Droin NM, Newmeyer DD, Schuler M and Green DR: Direct activation of
Bax by p53 mediates mitochondrial membrane permeabilization and
apoptosis. Science. 303:1010–1014. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cao Y, Siegel D and Knöchel W:
Xenopus POU factors of subclass V inhibit activin/nodal
signaling during gastrulation. Mech Dev. 123:614–625. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cao Y, Knöchel S, Donow C, Miethe J,
Kaufmann E and Knöchel W: The POU factor Oct-25 regulates the
Xvent-2B gene and counteracts terminal differentiation in
Xenopus embryos. J Biol Chem. 279:43735–43743. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hinkley CS, Martin JF, Leibham D and Perry
M: Sequential expression of multiple POU proteins during amphibian
early development. Mol Cell Biol. 12:638–649. 1992. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ng WL, Chen G, Wang M, Wang H, Story M,
Shay JW, Zhang X, Wang J, Amin AR, Hu B, et al: OCT4 as a target of
miR-34a stimulates p63 but inhibits p53 to promote human cell
transformation. Cell Death Dis. 5:e10242014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Y, Meng L, Hu H, Zhang Y, Zhao C, Li
Q, Shi F, Wang X and Lin A: Oct-4B isoform is differentially
expressed in breast cancer cells: Hypermethylation of regulatory
elements of Oct-4A suggests an alternative promoter and
transcriptional start site for Oct-4B transcription. Biosci Rep.
31:109–115. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Agarwal ML, Taylor WR, Chernov MV,
Chernova OB and Stark GR: The p53 network. J Biol Chem. 273:1–4.
1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pesce M, Gross MK and Schöler HR: In line
with our ancestors: Oct-4 and the mammalian germ. Bioessays.
20:722–732. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schöler HR, Ruppert S, Suzuki N, Chowdhury
K and Gruss P: New type of POU domain in germ line-specific protein
Oct-4. Nature. 344:435–439. 1990. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Wang P, Branch DR, Bali M, Schultz GA,
Goss PE and Jin T: The POU homeodomain protein OCT3 as a potential
transcriptional activator for fibroblast growth factor-4 (FGF-4) in
human breast cancer cells. Biochem J. 375:199–205. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li D, Yang ZK, Bu JY, Xu CY, Sun H, Tang
JB, Lin P, Cheng W, Huang N, Cui RJ, et al: OCT4B modulates OCT4A
expression as ceRNA in tumor cells. Oncol Rep. 33:2622–2630. 2015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sherr CJ and Weber JD: The ARF/p53
pathway. Curr Opin Genet Dev. 10:94–99. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim WY and Sharpless NE: The regulation of
INK4/ARF in cancer and aging. Cell. 127:265–275. 2006. View Article : Google Scholar : PubMed/NCBI
|