1
|
Wilson LS and Lightwood JM: Pancreatic
cancer: Total costs and utilization of health services. J Surg
Oncol. 71:171–181. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dimastromatteo J, Houghton JL, Lewis JS
and Kelly KA: Challenges of pancreatic cancer. Cancer J.
21:188–193. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lopes CV, Hartmann AA, Almeida RF and
Weiss PB: Gastric bulging confirmed as a pancreatic solid
pseudopapillary tumor by endoscopic ultrasound-guided fine needle
aspiration. Endosc Ultrasound. 6:212–214. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gupta R, Mortelé KJ, Tatli S, Girshman J,
Glickman JN, Levy AD, Erturk SM, Heffess CS, Banks PA and Silverman
SG: Pancreatic intraductal papillary mucinous neoplasms: Role of CT
in predicting pathologic subtypes. AJR Am J Roentgenol.
191:1458–1464. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lee TH, Cha SW and Cho YD: EUS
elastography: Advances in diagnostic EUS of the pancreas. Korean J
Radiol. 13 Suppl 1:S12–S16. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Khashab MA, Kim K, Lennon AM, Shin EJ,
Tignor AS, Amateau SK, Singh VK, Wolfgang CL, Hruban RH and Canto
MI: Should we do EUS/FNA on patients with pancreatic cysts? The
incremental diagnostic yield of EUS over CT/MRI for prediction of
cystic neoplasms. Pancreas. 42:717–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Alizadeh Mohammad AH, Shahrokh S,
Hadizadeh M, Padashi M and Zali MR: Diagnostic potency of
EUS-guided FNA for the evaluation of pancreatic mass lesions.
Endosc Ultrasound. 5:30–34. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xin Z, Ma Q, Ren S, Wang G and Li F: The
understanding of circular RNAs as special triggers in
carcinogenesis. Brief Funct Genomics. 16:80–86. 2017.PubMed/NCBI
|
9
|
Wang Y, Liu J, Liu C, Naji A and Stoffers
DA: MicroRNA-7 regulates the mTOR pathway and proliferation in
adult pancreatic β-cells. Diabetes. 62:887–895. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kulcheski FR, Christoff AP and Margis R:
Circular RNAs are miRNA sponges and can be used as a new class of
biomarker. J Biotech. 238:42–51. 2016. View Article : Google Scholar
|
11
|
Li P, Chen S, Chen H, Mo X, Li T, Shao Y,
Xiao B and Guo J: Using circular RNA as a novel type of biomarker
in the screening of gastric cancer. Clin Chim Acta. 444:132–136.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li F, Zhang L, Li W, Deng J, Zheng J, An
M, Lu J and Zhou Y: Circular RNA ITCH has inhibitory effect on ESCC
by suppressing the Wnt/β-catenin pathway. Oncotarget. 6:6001–6013.
2015.PubMed/NCBI
|
13
|
Li J, Yang J, Zhou P, Le Y, Zhou C, Wang
S, Xu D, Lin HK and Gong Z: Circular RNAs in cancer: Novel insights
into origins, properties, functions and implications. Am J Cancer
Res. 5:472–480. 2015.PubMed/NCBI
|
14
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-delta delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Memczak S, Papavasileiou P, Peters O and
Rajewsky N: Identification and characterization of circular RNAs as
a new class of putative biomarkers in human blood. PloS One.
10:e01412142015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhuang ZG, Zhang JA, Luo HL, Liu GB, Lu
YB, Ge NH, Zheng BY, Li RX, Chen C, Wang X, et al: The circular RNA
of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new
diagnostic biomarker and therapeutic target of active pulmonary
tuberculosis. Mol Immunol. 90:264–272. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lu Z, Filonov GS, Noto JJ, Schmidt CA,
Hatkevich TL, Wen Y, Jaffrey SR and Matera AG: Metazoan tRNA
introns generate stable circular RNAs in vivo. RNA. 21:1554–1565.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
AbouHaidar MG, Venkataraman S, Golshani A,
Liu B and Ahmad T: Novel coding, translation, and gene expression
of a replicating covalently closed circular RNA of 220 nt. Proc
Natl Acad Sci USA. 111:14542–14547. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bartsch D, Zirkel A and Kurian L:
Characterization of circular RNAs (circRNA) associated with the
translation machinery. Methods Mol Biol. 1724:159–166. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kelly S, Greenman C, Cook PR and
Papantonis A: Exon skipping is correlated with exon
circularization. J Mol Biol. 427:2414–2417. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu Q, Wang Y, Cao M, Pantaleo V, Burgyan
J, Li WX and Ding SW: Homology-independent discovery of replicating
pathogenic circular RNAs by deep sequencing and a new computational
algorithm. Proc Natl Acad Sci USA. 109:3938–3943. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wilusz J: Circular RNA and splicing: Skip
happens. J Mol Biol. 427:2411–2413. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Petkovic S and Muller S: RNA
circularization strategies in vivo and in vitro. Nucleic Acids Res.
43:2454–2465. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sand M, Bechara FG, Sand D, Gambichler T,
Hahn SA, Bromba M, Stockfleth E and Hessam S: Circular RNA
expression in basal cell carcinoma. Epigenomics. 8:619–632. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Vidal AF, Sandoval GT, Magalhaes L, Santos
SE and Ribeiro-dos-Santos A: Circular RNAs as a new field in gene
regulation and their implications in translational research.
Epigenomics. 8:551–562. 2016. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Yu X, Koenig MR and Zhu Y: Plasma miRNA,
an emerging biomarker for pancreatic cancer. Ann Transl Med.
3:2972015.PubMed/NCBI
|
30
|
Patil R, Ona MA, Papafragkakis C,
Duddempudi S, Anand S and Jamil LH: Endoscopic ultrasound-guided
fine-needle aspiration in the diagnosis of adrenal lesions. Ann
Gastroenterol. 29:307–311. 2016.PubMed/NCBI
|
31
|
Crinò SF, Bellocchi Conti MC, Bernardoni
L, Manfrin E, Parisi A, Amodio A, Pretis ND, Frulloni L and
Gabbrielli A: Diagnostic yield of EUS-FNA of small (</=15 mm)
solid pancreatic lesions using a 25-gauge needle. Hepatob Pancr Dis
Int. 17:70–74. 2018. View Article : Google Scholar
|
32
|
Yamabe A, Irisawa A, Bhutani MS, Shibukawa
G, Fujisawa M, Sato A, Yoshida Y, Arakawa N, Ikeda T, Igarashi R,
et al: Efforts to improve the diagnostic accuracy of endoscopic
ultrasound-guided fine-needle aspiration for pancreatic tumors.
Endosc Ultrasound. 5:225–232. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Reyes MC, Huang X, Bain A and Ylagan L:
Primary pancreatic leiomyosarcoma with metastasis to the liver
diagnosed by endoscopic ultrasound-guided fine needle aspiration
and fine needle biopsy: A case report and review of literature.
Diagn Cytopathol. 44:1070–1073. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chebib I, Albanese E, Scourtas A and
Pitman MB: Inspissated cyst fluid in endoscopic ultrasound-guided
fine needle aspiration of pancreatic cysts. Diagn Cytopathol. 2018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Salek C, Benesova L, Zavoral M, Nosek V,
Kasperova L, Ryska M, Strnad R, Traboulsi E and Minarik M:
Evaluation of clinical relevance of examining K-ras, p16 and p53
mutations along with allelic losses at 9p and 18q in EUS-guided
fine needle aspiration samples of patients with chronic
pancreatitis and pancreatic cancer. World J Gastroenterol.
13:3714–3720. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vilmann P, Jacobsen GK, Henriksen FW and
Hancke S: Endoscopic ultrasonography with guided fine needle
aspiration biopsy in pancreatic disease. Gastrointest Endosc.
38:172–173. 1992. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chang KJ, Nguyen P, Erickson RA, Durbin TE
and Katz KD: The clinical utility of endoscopic ultrasound-guided
fine-needle aspiration in the diagnosis and staging of pancreatic
carcinoma. Gastrointest Endosc. 45:387–393. 1997. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chang KJ, Albers CG, Erickson RA, Butler
JA, Wuerker RB and Lin F: Endoscopic ultrasound-guided fine needle
aspiration of pancreatic carcinoma. Am J Gastroenterol. 89:263–266.
1994.PubMed/NCBI
|
39
|
Giovannini M, Seitz JF, Monges G, Perrier
H and Rabbia I: Fine-needle aspiration cytology guided by
endoscopic ultrasonography: Results in 141 patients. Endoscopy.
27:171–177. 1995. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mallery JS, Centeno BA, Hahn PF, Chang Y,
Warshaw AL and Brugge WR: Pancreatic tissue sampling guided by EUS,
CT/US, and surgery: A comparison of sensitivity and specificity.
Gastrointest Endosc. 56:218–224. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tada M, Komatsu Y, Kawabe T, Sasahira N,
Isayama H, Toda N, Shiratori Y and Omata M: Quantitative analysis
of K-ras gene mutation in pancreatic tissue obtained by endoscopic
ultrasonography-guided fine needle aspiration: Clinical utility for
diagnosis of pancreatic tumor. Am J Gastroenterol. 97:2263–2270.
2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gress F, Michael H, Gelrud D, Patel P,
Gottlieb K, Singh F and Grendell J: EUS-guided fine-needle
aspiration of the pancreas: Evaluation of pancreatitis as a
complication. Gastrointest Endosc. 56:864–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chotwiwatthanakun C, Santimanawong W,
Sobhon P, Wongtripop S and Vanichviriyakit R: Inhibitory effect of
a reproductive-related serpin on sperm trypsin-like activity
implicates its role in sperm maturation of Penaeus monodon. Mol
Reprod Dev. 85:205–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gettins PG and Olson ST: Inhibitory
serpins. New insights into their folding, polymerization,
regulation and clearance. Biochem J. 473:2273–2293. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Silverman GA, Bird PI, Carrell RW, Church
FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer
RW, et al: The serpins are an expanding superfamily of structurally
similar but functionally diverse proteins. Evolution, mechanism of
inhibition, novel functions, and a revised nomenclature. J Biol
Chem. 276:33293–33296. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Enewold L, Mechanic LE, Bowman ED, Platz
EA and Alberg AJ: SERPINA1 and ELA2 polymorphisms are not
associated with COPD or lung cancer. Anticancer Res. 32:3923–3928.
2012.PubMed/NCBI
|
47
|
Irving JA, Steenbakkers PJ, Lesk AM, den
Camp Op HJ, Pike RN and Whisstock JC: Serpins in prokaryotes. Mol
Biol Evol. 19:1881–1890. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Law RH, Zhang Q, McGowan S, Buckle AM,
Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI
and Whisstock JC: An overview of the serpin superfamily. Genome
Biol. 7:2162006. View Article : Google Scholar : PubMed/NCBI
|
49
|
de Ronde JJ, Lips EH, Mulder L, Vincent
AD, Wesseling J, Nieuwland M, Kerkhoven R, Peeters Vrancken MJ,
Sonke GS, Rodenhuis S and Wessels LF: SERPINA6, BEX1, AGTR1,
SLC26A3, and LAPTM4B are markers of resistance to neoadjuvant
chemotherapy in HER2-negative breast cancer. Breast Cancer Res
Treat. 137:213–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Hadzik-Blaszczyk M, Zdral A, Zielonka TM,
Rozy A, Krupa R, Falkowski A, Wardyn KA, Chorostowska-Wynimko J and
Zycinska K: SERPINA1 gene variants in granulomatosis with
polyangiitis. Adv Exp Med Biol. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Baker C, Belbin O, Kalsheker N and Morgan
K: SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci.
12:2821–2835. 2007. View
Article : Google Scholar : PubMed/NCBI
|
52
|
Vicuña L, Strochlic DE, Latremoliere A,
Bali KK, Simonetti M, Husainie D, Prokosch S, Riva P, Griffin RS,
Njoo C, et al: The serine protease inhibitor SerpinA3N attenuates
neuropathic pain by inhibiting T cell-derived leukocyte elastase.
Nat Med. 21:518–523. 2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Lim W, Kim HS, Jeong W, Ahn SE, Kim J, Kim
YB, Kim MA, Kim MK, Chung HH, Song YS, et al: SERPINB3 in the
chicken model of ovarian cancer: A prognostic factor for platinum
resistance and survival in patients with epithelial ovarian cancer.
PloS One. 7:e498692012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Di Francesco A, Di Germanio C, Panda AC,
Huynh P, Peaden R, Navas-Enamorado I, Bastian P, Lehrmann E,
Diaz-Ruiz A, Ross D, et al: Novel RNA-binding activity of NQO1
promotes SERPINA1 mRNA translation. Free Radi Biol Med. 99:225–233.
2016. View Article : Google Scholar
|
55
|
Kloth JN, Gorter A, Fleuren GJ, Oosting J,
Uljee S, ter Haar N, Dreef EJ, Kenter GG and Jordanova ES: Elevated
expression of SerpinA1 and SerpinA3 in HLA-positive cervical
carcinoma. J Pathol. 215:222–230. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kwon CH, Park HJ, Choi JH, Lee JR, Kim HK,
Jo HJ, Kim HS, Oh N, Song GA and Park DY: Snail and serpinA1
promote tumor progression and predict prognosis in colorectal
cancer. Oncotarget. 6:20312–20326. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Blanchet X, Pere-Brissaud A, Duprat N,
Pinault E, Delourme D, Ouali A, Combet C, Maftah A, Pélissier P and
Brémaud L: Mutagenesis of the bovSERPINA3-3 demonstrates the
requirement of aspartate-371 for intermolecular interaction and
formation of dimers. Protein Sci. 21:977–986. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Sipione S, Simmen KC, Lord SJ, Motyka B,
Ewen C, Shostak I, Rayat GR, Dufour JM, Korbutt GS, et al:
Identification of a novel human granzyme B inhibitor secreted by
cultured sertoli cells. J Immunol. 177:5051–5058. 2006. View Article : Google Scholar : PubMed/NCBI
|
59
|
Cullen SP and Martin SJ: Mechanisms of
granule-dependent killing. Cell Death Differ. 15:251–262. 2008.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Horvath AJ, Irving JA, Rossjohn J, Law RH,
Bottomley SP, Quinsey NS, Pike RN, Coughlin PB and Whisstock JC:
The murine orthologue of human antichymotrypsin: A structural
paradigm for clade A3 serpins. J Biol Chem. 280:43168–43178. 2005.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Ang LS, Boivin WA, Williams SJ, Zhao H,
Abraham T, Carmine-Simmen K, McManus BM, Bleackley RC and Granville
DJ: Serpina3n attenuates granzyme B-mediated decorin cleavage and
rupture in a murine model of aortic aneurysm. Cell Death Dis.
2:e2092011. View Article : Google Scholar : PubMed/NCBI
|
62
|
Qian DY, Yan GB, Bai B, Chen Y, Zhang SJ,
Yao YC and Xia H: Differential circRNA expression profiles during
the BMP2-induced osteogenic differentiation of MC3T3-E1 cells.
Biomed Pharmacother. 90:492–499. 2017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Sun HM, Mi YS, Yu FD, Han Y, Liu XS, Lu S,
Zhang Y, Zhao SL, Ye L, Liu TT, et al: SERPINA4 is a novel
independent prognostic indicator and a potential therapeutic target
for colorectal cancer. Am J Cancer Res. 6:1636–1649.
2016.PubMed/NCBI
|
64
|
Péré-Brissaud A, Blanchet X, Delourme D,
Pélissier P, Forestier L, Delavaud A, Duprat N, Picard B, Maftah A
and Brémaud L: Expression of SERPINA3s in cattle: Focus on
bovSERPINA3-7 reveals specific involvement in skeletal muscle. Open
Biol. 5:1500712015. View Article : Google Scholar : PubMed/NCBI
|
65
|
Ge N, Zhang S, Jin Z, Sun S, Yang A, Wang
B, Wang G, Xu G, Hao J, Zhong L, et al: Clinical use of endoscopic
ultrasound-guided fine-needle aspiration: Guidelines and
recommendations from Chinese society of digestive endoscopy. Endosc
Ultrasound. 6:75–82. 2017. View Article : Google Scholar : PubMed/NCBI
|