The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy (Review)
- Authors:
- Ha Thi Nguyen
- Hong‑Quan Duong
-
Affiliations: Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam, Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam - Published online on: May 9, 2018 https://doi.org/10.3892/ol.2018.8679
- Pages: 9-18
This article is mentioned in:
Abstract
Torre LA, Siegel RL, Ward EM and Jemal A: Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Burt R: Inheritance of colorectal cancer. Drug Discov Today Dis Mech. 4:293–300. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hendon SE and DiPalma JA: U.S. practices for colon cancer screening. Keio J Med. 54:179–183. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI | |
Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tsang AH, Cheng KH, Wong AS, Ng SS, Ma BB, Chan CM, Tsui NB, Chan LW, Yung BY and Wong SC: Current and future molecular diagnostics in colorectal cancer and colorectal adenoma. World J Gastroenterol. 20:3847–3857. 2014. View Article : Google Scholar : PubMed/NCBI | |
Grady WM and Pritchard CC: Molecular alterations and biomarkers in colorectal cancer. Toxicol Pathol. 42:124–139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fransén K, Klintenäs M, Österström A, Dimberg J, Monstein HJ and Söderkvist P: Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis. 25:527–533. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pino MS and Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 138:2059–2072. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lynch HT and de la Chapelle A: Hereditary colorectal cancer. N Engl J Med. 348:919–932. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Grady WM: Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans. 33:684–688. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kinzler KW and Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 87:159–170. 1996. View Article : Google Scholar : PubMed/NCBI | |
Tejpar S and Van Cutsem E: Molecular and genetic defects in colorectal tumorigenesis. Best Pract Res Clin Gastroenterol. 16:171–185. 2002. View Article : Google Scholar : PubMed/NCBI | |
O'Connell JB, Maggard MA and Ko CY: Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 96:1420–1425. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reimers MS, Zeestraten EC, Kuppen PJ, Liefers GJ and van de Velde CJ: Biomarkers in precision therapy in colorectal cancer. Gastroenterol Rep (Oxf). 1:166–183. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nachman MW and Crowell SL: Estimate of the mutation rate per nucleotide in humans. Genetics. 156:297–304. 2000.PubMed/NCBI | |
Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, et al: Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 328:636–639. 2010. View Article : Google Scholar : PubMed/NCBI | |
Loeb LA, Loeb KR and Anderson JP: Multiple mutations and cancer. Proc Natl Acad Sci USA. 100:776–781. 2003. View Article : Google Scholar : PubMed/NCBI | |
Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 268:1336–1338. 1995. View Article : Google Scholar : PubMed/NCBI | |
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riqqins GJ, et al: High frequency of mutations of the PIK3CA gene in human cancers. Science. 304:5542004. View Article : Google Scholar : PubMed/NCBI | |
Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, et al: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 244:217–221. 1989. View Article : Google Scholar : PubMed/NCBI | |
Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, Willson JK, Markowitz S, Hamilton SR, Kern SE, et al: Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 13:343–346. 1996. View Article : Google Scholar : PubMed/NCBI | |
Diep CB, Kleivi K, Ribeiro FR, Teixeira MR, Lindgjærde OC and Lothe RA: The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes. Genes Chromosomes Cancer. 45:31–41. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jasmine F, Rahaman R, Dodsworth C, Roy S, Paul R, Raza M, Paul-Brutus R, Kamal M, Ahsan H and Kibriya MG: A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: Opportunities for future personalized treatment. PLoS One. 7:e319682012. View Article : Google Scholar : PubMed/NCBI | |
Baudis M: Genomic imbalances in 5918 malignant epithelial tumors: An explorative meta-analysis of chromosomal CGH data. BMC Cancer. 7:2262007. View Article : Google Scholar : PubMed/NCBI | |
Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, Roylance RR, Carter NP and Tomlinson IP: Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene. 24:118–129. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zarzour P, Boelen L, Luciani F, Beck D, Sakthianandeswaren A, Mouradov D, Sieber OM, Hawkins NJ, Hesson LB, Ward RL and Wong JW: Single nucleotide polymorphism array profiling identifies distinct chromosomal aberration patterns across colorectal adenomas and carcinomas. Genes Chromosomes Cancer. 54:303–314. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Foulds L: The natural history of cancer. J Chronic Dis. 8:2–37. 1958. View Article : Google Scholar : PubMed/NCBI | |
Nowell PC: The clonal evolution of tumor cell populations. Science. 194:23–28. 1976. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HT, Geens M and Spits C: Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update. 19:187–205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lund RJ, Närvä E and Lahesmaa R: Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet. 13:732–744. 2012. View Article : Google Scholar : PubMed/NCBI | |
International Stem Cell Initiative, . Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Barker D, Munoz MB, et al: Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 29:1132–1144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HT, Geens M, Mertzanidou A, Jacobs K, Heirman C, Breckpot K and Spits C: Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. Mol Hum Reprod. 20:168–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S, Skotheim RI, Lothe RA, Pera MF, Colman A, Robson P, et al: BCL-XL Mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Reports. 1:379–386. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, et al: The landscape of somatic copy-number alteration across human cancers. Nature. 463:899–905. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM and Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med. 319:525–532. 1988. View Article : Google Scholar : PubMed/NCBI | |
Ogino S, Nosho K, Irahara N, Shima K, Baba Y, Kirkner GJ, Meyerhardt JA and Fuchs CS: Prognostic significance and molecular associations of 18q loss of heterozygosity: A cohort study of microsatellite stable colorectal cancers. J Clin Oncol. 27:4591–4598. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, Paty PB, Gerald WL, Notterman DA and Domany E: Association of survival and disease progression with chromosomal instability: A genomic exploration of colorectal cancer. Proc Natl Acad Sci USA. 106:7131–7136. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jen J, Kim H, Piantadosi S, Liu ZF, Levitt RC, Sistonen P, Kinzler KW, Vogelstein B and Hamilton SR: Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med. 331:213–221. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zauber P, Sabbath-solitare M, Marotta SP and Bishop T: Loss of heterozygosity for chromosome 18q and microsatellite instability are highly consistent across the region of the DCC and SMAD4 genes in colorectal carcinomas and adenomas. J Appl Res. 8:14–23. 2008. | |
Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, et al: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 247:49–56. 1990. View Article : Google Scholar : PubMed/NCBI | |
Mehlen P and Fearon ER: Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol. 22:3420–3428. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Järvinen H, Mecklin JP, Hemminki A, Schwartz S Jr, Aaltonen LA and Arango D: SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 11:2606–2611. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grady WM: Genomic instability and colon cancer. Cancer Metastasis Rev. 23:11–27. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Hata A, Lo RS, Massagué J and Pavletich NP: A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 388:87–93. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hurban RH and Kern SE: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 271:350–353. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K and Saji S: Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology. 111:1369–1372. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takagi Y, Koumura H, Futamura M, Aoki S, Ymaguchi K, Kida H, Tanemura H, Shimokawa K and Saji S: Somatic alterations of the SMAD-2 gene in human colorectal cancers. Br J Cancer. 78:1152–1155. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, Day F, Li S, Tsui C, Lipton L, et al: SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 73:725–735. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takebayashi S, Ogawa T, Jung KY, Muallem A, Mineta H, Fisher SG, Grenman R and Carey TE: Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma. Cancer Res. 60:3397–3403. 2000.PubMed/NCBI | |
Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B and Kinzler KW: APC mutations occur early during colorectal tumorigenesis. Nature. 359:235–237. 1992. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stanczak A, Stec R, Bodnar L, Olszewski W, Cichowicz M, Kozlowski W, Szcylik C, Pietrucha T, Wieczorek M and Lamparska-Pzybysz M: Prognostic significance of Wnt-1, β-catenin and E-cadherin expression in advanced colorectal carcinoma. Pathol Oncol Res. 17:955–963. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B and Kinzler KW: Activation of β-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 275:1787–1790. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC, Cunningham JM, Boardman LA, Qian C, et al: Mutations in AXIN2 cause colorectal cancer with defective mismatch repair. Nat Genet. 26:146–147. 2000. View Article : Google Scholar : PubMed/NCBI | |
Coppedè F, Lopomo A, Spisni R and Migliore L: Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 20:943–956. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kapitanović S, Cacev T, Radosević S, Spaventi S, Spaventi R and Pavelić K: APC gene loss of heterozygosity, mutations, E1317Q, and I1307K germ-line variants in sporadic colon cancer in Croatia. Exp Mol Pathol. 77:193–200. 2004. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Epigenetic lesions causing genetic lesions in human cancer: Promoter hypermethylation of DNA repair genes. Eur J Cancer. 36:2294–2300. 2000. View Article : Google Scholar : PubMed/NCBI | |
Levine AJ: P53, the cellular gatekeeper for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI | |
el-Deiry WS: Regulation of p53 downstream genes. Semin Cancer Biol. 8:345–357. 1998. View Article : Google Scholar : PubMed/NCBI | |
Li XL, Zhou J, Chen ZR and Chng WJ: P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 21:84–93. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leslie A, Carey FA, Pratt NR and Steele RJ: The colorectal adenoma-carcinoma sequence. Br J Surg. 89:845–860. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takayama T, Miyanishi K, Hayashi T, Sato Y and Niitsu Y: Colorectal cancer: Genetics of development and metastasis. J Gastroenterol. 41:185–192. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sigal A and Rotter V: Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res. 60:6788–6793. 2000.PubMed/NCBI | |
Liu Y and Bodmer WF: Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA. 103:976–981. 2006. View Article : Google Scholar : PubMed/NCBI | |
Béroud C and Soussi T: The UMD-p53 database: New mutations and analysis tools. Hum Mutat. 21:176–181. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vigil D, Cherfils J, Rossman KL and Der CJ: Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nat Rev Cancer. 10:842–857. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schubbert S, Shannon K and Bollag G: Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 7:295–308. 2007. View Article : Google Scholar : PubMed/NCBI | |
Adjei AA: Ras signaling pathway proteins as therapeutic targets. Curr Pharm Des. 7:1581–1594. 2001. View Article : Google Scholar : PubMed/NCBI | |
Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al: COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 39:(Database issue). D945–D950. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan C and Du X: KRAS mutation testing in metastatic colorectal cancer. World J Gastroenterol. 18:5171–5180. 2012.PubMed/NCBI | |
Conlin A, Smith G, Carey FA, Wolf CR and Steele RJ: The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 54:1283–1286. 2005. View Article : Google Scholar : PubMed/NCBI | |
Phipps AI, Buchanan DD, Makar KW, Win AK, Baron JA, Lindor NM, Potter JD and Newcomb PA: KRAS-mutation status in relation to colorectal cancer survival: The joint impact of correlated tumour markers. Br J Cancer. 108:1757–1764. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cejas P, López-Gómez M, Aguayo C, Madero R, de Castro Carpeño J, Belda-Iniesta C, Barriuso J, García Moreno V, Larrauri J, López R, et al: KRAS mutations in primary colorectal cancer tumors and related metastases: A potential role in prediction of lung metastasis. PLoS One. 4:e81992009. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Heo JS, Lee J, Lee JY, Lee MY, Lim SH, Lee WY, Kim SH, Park YA, Cho YB, et al: The impact of KRAS mutations on prognosis in surgically resected colorectal cancer patients with liver and lung metastases: A retrospective analysis. BMC Cancer. 16:1202016. View Article : Google Scholar : PubMed/NCBI | |
Nash GM, Gimbel M, Shia J, Nathanson DR, Ndubuisi MI, Zeng ZS, Kemeny N and Paty PB: KRAS mutation correlates with accelerated metastatic progression in patients with colorectal liver metastases. Ann Surg Oncol. 17:572–578. 2010. View Article : Google Scholar : PubMed/NCBI | |
Inoue Y, Saigusa S, Iwata T, Okugawa Y, Toiyama Y, Tanaka K, Uchida K, Mohri Y and Kusunoki M: The prognostic value of KRAS mutations in patients with colorectal cancer. Oncol Rep. 28:1579–1584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suqqs S, Radinsky R, et al: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 26:1626–1634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitalle S, et al: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 359:1757–1765. 2008. View Article : Google Scholar : PubMed/NCBI | |
Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J and Bardelli A: Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 101:1308–1324. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ and Vogelstein B: Prevalence of ras gene mutations in human colorectal cancers. Nature. 327:293–297. 1987. View Article : Google Scholar : PubMed/NCBI | |
Forrester K, Almoguera C, Han K, Grizzle WE and Perucho M: Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature. 327:298–303. 1987. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Medarde A and Santos E: Ras in cancer and developmental diseases. Genes Cancer. 2:344–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Neumann J, Zeindl-Eberhart E, Kirchner T and Jung A: Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract. 205:858–862. 2009. View Article : Google Scholar : PubMed/NCBI | |
Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D, Iafrate AJ, Fuchs CS, Haigis KM and Ogino S: NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol. 19:157–163. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vaughn CP, ZoBell SD, Furtado LV, Baker CL and Samowitz WS: Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 50:307–312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kosmidou V, Oikonomou E, Vlassi M, Avlonitis S, Katseli A, Tsipras I, Mourtzoukou D, Kontogeorgos G, Zografos G and Pintzas A: Tumor heterogeneity revealed by KRAS, BRAF, and PIK3CA pyrosequencing: KRAS and PIK3CA intratumor mutation profile differences and their therapeutic implications. Hum Mutat. 35:329–340. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Rahman WM and Peltomäki P: Molecular basis and diagnostics of hereditary colorectal cancers. Ann Med. 36:379–388. 2014. View Article : Google Scholar | |
Thibodeau SN, Bren G and Schaid D: Microsatellite instability in cancer of the proximal colon. Science. 260:816–819. 1993. View Article : Google Scholar : PubMed/NCBI | |
Boland CR and Goel A: Somatic evolution of cancer cells. Semin Cancer Biol. 15:436–450. 2005. View Article : Google Scholar : PubMed/NCBI | |
Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN and Srivastava S: A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58:5248–5257. 1998.PubMed/NCBI | |
Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, et al: T25 repeat in the 3′ untranslated region of the CASP2 gene: A sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 65:8072–8078. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, Järvinen H, Powell SM, Jen J, Hamilton SR, et al: Clues to the pathogenesis of familial colorectal cancer. Science. 260:812–816. 1993. View Article : Google Scholar : PubMed/NCBI | |
Jiricny J: The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 7:335–346. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pal T, Permuth-Wey J and Sellers TA: A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer. 113:733–742. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grady WM and Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 135:1079–1099. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hudler P: Genetic aspects of gastric cancer instability. Scientific World Journal. 2012:7619092012. View Article : Google Scholar : PubMed/NCBI | |
Perucho M: Cancer of the microsatellite mutator phenotype. Biol Chem. 377:675–684. 1996.PubMed/NCBI | |
Mori Y, Yin J, Rashid A, Leggett BA, Young J, Simms L, Kuehl PM, Langenberg P, Meltzer SJ and Stine OC: Instabilotyping: Comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res. 61:6046–6049. 2001.PubMed/NCBI | |
Parsons R, Myeroff LL, Liu B, Wilison JK V, Markowitz SD, Kinzler KW and Vogelstein B: Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 55:5548–5550. 1995.PubMed/NCBI | |
Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI | |
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB and Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 96:8681–8686. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lao VV and Grady WM: Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 8:686–700. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jones PA and Laird PW: Cancer epigenetics comes of age. Nat Genet. 21:163–167. 1999. View Article : Google Scholar : PubMed/NCBI | |
Laird PW: Cancer epigenetics. Hum Mol Genet. 14:R65–R76. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jass JR: Serrated adenoma of the colorectum and the DNA-methylator phenotype. Nat Clin Pract Oncol. 2:398–405. 2005. View Article : Google Scholar : PubMed/NCBI | |
Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA, Wolff RK and Slattery ML: Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 129:837–845. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger DJ, Campan M, Laird PW, Loda M and Fuchs CS: CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut. 55:1000–1006. 2006. View Article : Google Scholar : PubMed/NCBI | |
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, et al: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 38:787–793. 2006. View Article : Google Scholar : PubMed/NCBI | |
Worthley DL and Leggett BA: Colorectal cancer: Molecular features and clinical opportunities. Clin Biochem Rev. 31:31–38. 2010.PubMed/NCBI | |
Ogino S, Kawasaki T, Kirkner GJ, Ohnishi M and Fuchs CS: 18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high. BMC Cancer. 7:722007. View Article : Google Scholar : PubMed/NCBI | |
Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M and Fuchs CS: Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn. 9:305–314. 2007. View Article : Google Scholar : PubMed/NCBI | |
Toyota M, Ohe-Toyota M, Ahuja N and Issa JP: Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci USA. 97:710–715. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kambara T, Simms LA, Whitehall VLJ, Spring KJ, Wynter CVA, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, et al: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 53:1137–1144. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, OConnor T and Ward R: CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 122:1376–1387. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K, et al: Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA. 104:18654–18659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Munro AJ, Lain S and Lane DP: P53 abnormalities and outcomes in colorectal cancer: A systematic review. Br J Cancer. 92:434–444. 2005. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, et al: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 25:1658–1664. 2007. View Article : Google Scholar : PubMed/NCBI | |
Heinemann V, Stintzing S, Kirchner T, Boeck S and Jung A: Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev. 35:262–271. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boland CR: The molecular biology of gastrointestinal cancer: Implications for diagnosis and therapy. Gastrointest Endosc Clin N Am. 18:401–413. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sinicrope FA, Foster NR, Thibodeau SN, Marsoni S, Monges G, Labianca R, Kim GP, Yothers G, Allegra C, Moore MJ, et al: DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst. 103:863–875. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roth AD, Delorenzi M, Tejpar S, Yan P, Klingbiel D, Fiocca R, d'Ario G, Cisar L, Labianca R, Cunningham D, et al: Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst. 104:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Popat S, Hubner R and Houlston RS: Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 23:609–618. 2005. View Article : Google Scholar : PubMed/NCBI | |
Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M and Warusavitarne J: Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 27:1423–1431. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, et al: Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 349:247–257. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, French AJ, Kabat B, Foster NR, Torri V, et al: Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 28:3219–3226. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Sun Y, Huang XE, Yu DS, Zhou JN, Zhou X, Li DZ and Guan X: Carcinoma microsatellite instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for stage II rectal cancer. Asian Pacific J Cancer Prev. 16:1545–1551. 2015. View Article : Google Scholar | |
Tejpar S, Saridaki Z, Delorenzi M, Bosman F and Roth AD: Microsatellite instability, prognosis and drug sensitivity of stage II and III colorectal cancer: More complexity to the puzzle. J Natl Cancer Inst. 103:841–844. 2011. View Article : Google Scholar : PubMed/NCBI | |
Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF and Uzzan B: Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer. 45:1890–1896. 2009. View Article : Google Scholar : PubMed/NCBI | |
De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, et al: Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 19:614–618. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M, et al: A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 19:619–625. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P and Delrio P: Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep. 34:1087–1096. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, et al: CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 6:200702016. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Chen L, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F and Duan Z: Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget. 8:30276–30287. 2017. View Article : Google Scholar : PubMed/NCBI |