The role of chemokine receptor 9/chemokine ligand 25 signaling: From immune cells to cancer cells (Review)
- Authors:
- Cong Wang
- Zhenghuan Liu
- Zhihui Xu
- Xian Wu
- Dongyang Zhang
- Ziqi Zhang
- Jianqin Wei
-
Affiliations: Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, P.R. China, Department of Urology, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China, Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China, The University of Miami Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL 33136, USA - Published online on: June 4, 2018 https://doi.org/10.3892/ol.2018.8896
- Pages: 2071-2077
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zaballos A, Gutiérrez J, Varona R, Ardavín C and Márquez G: Cutting edge: Identification of the orphan chemokine receptor GPR-9-6 as CCR9, the receptor for the chemokine TECK. J Immunol. 162:5671–5675. 1999.PubMed/NCBI | |
Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, Copeland NG, Gilbert DJ, Jenkins NA, Bacon KB and Zlotnik A: TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity. 7:291–301. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yu CR, Peden KW, Zaitseva MB, Golding H and Farber JM: CCR9A and CCR9B: Two receptors for the chemokine CCL25/TECK/Ck beta-15 that differ in their sensitivities to ligand. J Immunol. 164:1293–1305. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wendland M, Czeloth N, Mach N, Malissen B, Kremmer E, Pabst O and Förster R: CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc Natl Acad Sci USA. 104:6347–6352. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mizuno S, Kanai T, Mikami Y, Sujino T, Ono Y, Hayashi A, Handa T, Matsumoto A, Nakamoto N, Matsuoka K, et al: CCR9+ plasmacytoid dendritic cells in the small intestine suppress development of intestinal inflammation in mice. Immunol Lett. 146:64–69. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wurbel MA, McIntire MG, Dwyer P and Fiebiger E: CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS One. 6:e164422011. View Article : Google Scholar : PubMed/NCBI | |
Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M, Jordan BR, et al: The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol. 30:262–271. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schmutz C, Cartwright A, Williams H, Haworth O, Williams JH, Filer A, Salmon M, Buckley CD and Middleton J: Monocytes/macrophages express chemokine receptor CCR9 in rheumatoid arthritis and CCL25 stimulates their differentiation. Arthritis Res Ther. 12:R1612010. View Article : Google Scholar : PubMed/NCBI | |
Dursun E, Endele M, Musumeci A, Failmezger H, Wang SH, Tresch A, Schroeder T and Krug AB: Continuous single cell imaging reveals sequential steps of plasmacytoid dendritic cell development from common dendritic cell progenitors. Sci Rep. 6:374622016. View Article : Google Scholar : PubMed/NCBI | |
Eberhardson M, Marits P, Jones M, Jones P, Karlen P, Karlsson M, Cotton G, Woznica K, Maltman B, Glise H and Winqvist O: Treatment of inflammatory bowel disease by chemokine receptor-targeted leukapheresis. Clin Immunol. 149:73–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alvarez C, Benítez A, Rojas L, Pujol M, Carvajal P, Díaz-Zúñiga J and Vernal R: Differential expression of CC chemokines (CCLs) and receptors (CCRs) by human T lymphocytes in response to different Aggregatibacter actinomycetemcomitans serotypes. J Appl Oral Sci. 23:536–546. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xiong T, Xiao R, Xiong A, Chen J, Altaf E, Zheng Y, Zhu G, He Y and Tan J: Anti-CCL25 antibody prolongs skin allograft survival by blocking CCR9 expression and impairing splenic T-cell function. Arch Immunol Ther Exp (Warsz). 61:237–244. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen HJ, Edwards R, Tucci S, Bu P, Milsom J, Lee S, Edelmann W, Gümüs ZH, Shen X and Lipkin S: Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. J Clin Invest. 122:3184–3196. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Heinrich EL, Li L, Lu J, Choi AH, Levy RA, Wagner JE, Yip ML, Vaidehi N and Kim J: CCR9-mediated signaling through β-catenin and identification of a novel CCR9 antagonist. Mol Oncol. 9:1599–1611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xiao R, Xiong J, Leng J, Ehtisham A, Hu Y, Ding Q, Xu H, Liu S, Wang J, et al: Activated ERM protein plays a critical role in drug resistance of MOLT4 cells induced by CCL25. PLoS One. 8:e523842013. View Article : Google Scholar : PubMed/NCBI | |
Krueger A, Willenzon S, Lyszkiewicz M, Kremmer E and Forster R: CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood. 115:1906–1912. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zlotoff DA, Sambandam A, Logan TD, Bell JJ, Schwarz BA and Bhandoola A: CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood. 115:1897–1905. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N and Takahama Y: Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood. 108:2531–2539. 2006. View Article : Google Scholar : PubMed/NCBI | |
Uehara S, Grinberg A, Farber JM and Love PE: A role for CCR9 in T lymphocyte development and migration. J Immunol. 168:2811–2819. 2002. View Article : Google Scholar : PubMed/NCBI | |
Evans-Marin HL, Cao AT, Yao S, Chen F, He C, Liu H, Wu W, Gonzalez MG, Dann SM and Cong Y: Unexpected regulatory role of CCR9 in regulatory T cell development. PLoS One. 10:e01341002015. View Article : Google Scholar : PubMed/NCBI | |
McGuire HM, Vogelzang A, Ma CS, Hughes WE, Silveira PA, Tangye SG, Christ D, Fulcher D, Falcone M and King C: A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity. 34:602–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tubo NJ, Wurbel MA, Charvat TT, Schall TJ, Walters MJ and Campbell JJ: A systemically-administered small molecule antagonist of CCR9 acts as a tissue-selective inhibitor of lymphocyte trafficking. PLoS One. 7:e504982012. View Article : Google Scholar : PubMed/NCBI | |
Greis C, Rasuly Z, Janosi RA, Kordelas L, Beelen DW and Liebregts T: Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: A prospective observational study. Crit Care. 21:702017. View Article : Google Scholar : PubMed/NCBI | |
Drakes ML, Stiff PJ and Blanchard TG: Inverse relationship between dendritic cell CCR9 expression and maturation state. Immunology. 127:466–476. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stock A, Booth S and Cerundolo V: Prostaglandin E2 suppresses the differentiation of retinoic acid-producing dendritic cells in mice and humans. J Exp Med. 208:761–773. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML and de Jong EC: Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 8:265–278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Dodge J, Komorowski R and Drobyski WR: A critical role for the retinoic acid signaling pathway in the pathophysiology of gastrointestinal graft-versus-host disease. Blood. 121:3970–3980. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duurland CL, Brown CC, O'Shaughnessy RF and Wedderburn LR: CD161+Tconv and CD161+Treg share a transcriptional and functional phenotype despite limited overlap in TCRβ repertoire. Front Immunol. 8:1032017. View Article : Google Scholar : PubMed/NCBI | |
Aoyama K, Saha A, Tolar J, Riddle MJ, Veenstra RG, Taylor PA, Blomhoff R, Panoskaltsis-Mortari A, Klebanoff CA, Socié G, et al: Inhibiting retinoic acid signaling ameliorates graft-versus-host disease by modifying T-cell differentiation and intestinal migration. Blood. 122:2125–2134. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wurbel MA, Malissen M, Guy-Grand D, Meffre E, Nussenzweig MC, Richelme M, Carrier A and Malissen B: Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood. 98:2626–2632. 2001. View Article : Google Scholar : PubMed/NCBI | |
Demberg T, Mohanram V, Venzon D and Robert-Guroff M: Phenotypes and distribution of mucosal memory B-cell populations in the SIV/SHIV rhesus macaque model. Clin Immunol. 153:264–276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ehlin-Henriksson B, Liang W, Cagigi A, Mowafi F, Klein G and Nilsson A: Changes in chemokines and chemokine receptor expression on tonsillar B cells upon Epstein-Barr virus infection. Immunology. 127:549–557. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mizukami T, Kanai T, Mikami Y, Hayashi A, Doi T, Handa T, Matsumoto A, Jun L, Matsuoka K, Sato T, et al: CCR9+ macrophages are required for eradication of peritoneal bacterial infections and prevention of polymicrobial sepsis. Immunol Lett. 147:75–79. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chu PS, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, Mikami Y, Sugiyama K, Tomita K, Kanai T, et al: C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 58:337–350. 2013. View Article : Google Scholar : PubMed/NCBI | |
Amiya T, Nakamoto N, Chu PS, Teratani T, Nakajima H, Fukuchi Y, Taniki N, Yamaguchi A, Shiba S, Miyake R, et al: Bone marrow-derived macrophages distinct from tissue-resident macrophages play a pivotal role in Concanavalin A-induced murine liver injury via CCR9 axis. Sci Rep. 6:351462016. View Article : Google Scholar : PubMed/NCBI | |
Qiuping Z, Qun L, Chunsong H, Xiaolian Z, Baojun H, Mingzhen Y, Chengming L, Jinshen H, Qingping G, Kejian Z, et al: Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia. Cancer Res. 63:6469–6477. 2003.PubMed/NCBI | |
Mirandola L, Chiriva-Internati M, Montagna D, Locatelli F, Zecca M, Ranzani M, Basile A, Locati M, Cobos E, Kast WM, et al: Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia. J Pathol. 226:713–722. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Leng J, Hu M, Zhang L, Wang Z, Liu D, Tong X, Yu B, Hu Y, Deng C, et al: Ezrin is a key molecule in the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk Res. 34:769–776. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu B, Hu M, Wang Z, Liu D, Tong X, Leng J, Zhou B, Hu Y, Wu R, et al: Role of Rho-ROCK signaling in MOLT4 cells metastasis induced by CCL25. Leuk Res. 35:103–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagakubo D, Jin Z, Hieshima K, Nakayama T, Shirakawa AK, Tanaka Y, Hasegawa H, Hayashi T, Tsukasaki K, Yamada Y and Yoshie O: Expression of CCR9 in HTLV-1+ T cells and ATL cells expressing Tax. Int J Cancer. 120:1591–1597. 2007. View Article : Google Scholar : PubMed/NCBI | |
Annels NE, Willemze AJ, van der Velden VH, Faaij CM, van Wering E, Sie-Go DM, Egeler RM, van Tol MJ and Révész T: Possible link between unique chemokine and homing receptor expression at diagnosis and relapse location in a patient with childhood T-ALL. Blood. 103:2806–2808. 2004. View Article : Google Scholar : PubMed/NCBI | |
Qiuping Z, Jei X, Youxin J, Wei J, Chun L, Jin W, Qun W, Yan L, Chunsong H, Mingzhen Y, et al: CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation. Cancer Res. 64:7579–7587. 2004. View Article : Google Scholar : PubMed/NCBI | |
Deutsch AJ, Steinbauer E, Hofmann NA, Strunk D, Gerlza T, Beham-Schmid C, Schaider H and Neumeister P: Chemokine receptors in gastric MALT lymphoma: Loss of CXCR4 and upregulation of CXCR7 is associated with progression to diffuse large B-cell lymphoma. Mod Pathol. 26:182–194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Badr G, Lefevre EA and Mohany M: Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PLoS One. 6:e237412011. View Article : Google Scholar : PubMed/NCBI | |
Letsch A, Keilholz U, Schadendorf D, Assfalg G, Asemissen AM, Thiel E and Scheibenbogen C: Functional CCR9 expression is associated with small intestinal metastasis. J Invest Dermatol. 122:685–690. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seidl H, Richtig E, Tilz H, Stefan M, Schmidbauer U, Asslaber M, Zatloukal K, Herlyn M and Schaider H: Profiles of chemokine receptors in melanocytic lesions: de novo expression of CXCR6 in melanoma. Hum Pathol. 38:768–780. 2007. View Article : Google Scholar : PubMed/NCBI | |
Amersi FF, Terando AM, Goto Y, Scolyer RA, Thompson JF, Tran AN, Faries MB, Morton DL and Hoon DS: Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clin Cancer Res. 14:638–645. 2008. View Article : Google Scholar : PubMed/NCBI | |
Richmond A: CCR9 homes metastatic melanoma cells to the small bowel. Clin Cancer Res. 14:621–623. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salerno EP, Olson WC, McSkimming C, Shea S and Slingluff CL Jr: T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. Int J Cancer. 134:563–574. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jacquelot N, Enot DP, Flament C, Vimond N, Blattner C, Pitt JM, Yamazaki T, Roberti MP, Daillère R, Vétizou M, et al: Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Invest. 126:921–937. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park J, Ostrowitz MB, Cohen MS and Al-Kasspooles M: A patient with metastatic melanoma of the small bowel. Oncology (Williston Park). 23:98–102. 2009.PubMed/NCBI | |
Fusi A, Liu Z, Kümmerlen V, Nonnemacher A, Jeske J and Keilholz U: Expression of chemokine receptors on circulating tumor cells in patients with solid tumors. J Transl Med. 10:522012. View Article : Google Scholar : PubMed/NCBI | |
Kühnelt-Leddihn L, Müller H, Eisendle K, Zelger B and Weinlich G: Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: A potential prognostic value for CCR7 and CCR10? Arch Dermatol Res. 304:185–193. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Stockard CR, Grizzle WE, Lillard JW Jr and Singh S: Expression and histopathological correlation of CCR9 and CCL25 in ovarian cancer. Int J Oncol. 39:373–381. 2011.PubMed/NCBI | |
Johnson EL, Singh R, Singh S, Johnson-Holiday CM, Grizzle WE, Partridge EE and Lillard JW Jr: CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion. World J Surg Oncol. 8:622010. View Article : Google Scholar : PubMed/NCBI | |
Johnson-Holiday C, Singh R, Johnson E, Singh S, Stockard CR, Grizzle WE and Lillard JW Jr: CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion. Int J Oncol. 38:1279–1285. 2011.PubMed/NCBI | |
Feng LY, Ou ZL, Wu FY, Shen ZZ and Shao ZM: Involvement of a novel chemokine decoy receptor CCX-CKR in breast cancer growth, metastasis and patient survival. Clin Cancer Res. 15:2962–2970. 2009. View Article : Google Scholar : PubMed/NCBI | |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI | |
Johnson-Holiday C, Singh R, Johnson EL, Grizzle WE, Lillard JW Jr..Singh S: CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion. World J Surg Oncol. 9:462011. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Singh UP, Stiles JK, Grizzle WE and Lillard JW Jr: Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Clin Cancer Res. 10:8743–8750. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sharma PK, Singh R, Novakovic KR, Eaton JW, Grizzle WE and Singh S: CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide. Int J Cancer. 127:2020–2030. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Mailey B, Ellenhorn JD, Chu PG, Lowy AM and Kim J: CC chemokine receptor 9 enhances proliferation in pancreatic intraepithelial neoplasia and pancreatic cancer cells. J Gastrointest Surg. 13:1955–1962. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heinrich EL, Arrington AK, Ko ME, Luu C, Lee W, Lu J and Kim J: paracrine activation of chemokine receptor CCR9 enhances the invasiveness of pancreatic cancer cells. Cancer Microenviron. 6:241–245. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen HJ, Sun J, Huang Z, Hou H Jr, Arcilla M, Rakhilin N, Joe DJ, Choi J, Gadamsetty P, Milsom J, et al: Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 33:656–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Sun T, Chen Y, Gong S, Sun X, Zou F and Peng R: CCL25/CCR9 Signal promotes migration and invasion in hepatocellular and breast cancer cell lines. DNA Cell Biol. 35:348–357. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Qin C, Wu Y, Su Z, Xian G and Hu B: CCR9 as a prognostic marker and therapeutic target in hepatocellular carcinoma. Oncol Rep. 31:1629–1636. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Jiang L, Lin H, Li B, Lan J, Liang S, Shen B, Lei Z and Zheng W: Expression of CC chemokine receptor 9 predicts poor prognosis in patients with lung adenocarcinoma. Diagn Pathol. 10:1012015. View Article : Google Scholar : PubMed/NCBI | |
Gupta P, Sharma PK, Mir H, Singh R, Singh N, Kloecker GH, Lillard JW Jr and Singh S: CCR9/CCL25 expression in non-small cell lung cancer correlates with aggressive disease and mediates key steps of metastasis. Oncotarget. 5:10170–10179. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mishan MA, Heirani-Tabasi A, Mokhberian N, Hassanzade M, Kalalian Moghaddam H, Bahrami AR and Ahmadiankia N: Analysis of chemokine receptor gene expression in esophageal cancer cells compared with breast cancer with insights into metastasis. Iran J Public Health. 44:1353–1358. 2015.PubMed/NCBI | |
Chamorro S, Vela M, Franco-Villanueva A, Carramolino L, Gutiérrez J, Gómez L, Lozano M, Salvador B, García-Gallo M, Martínez-A C and Kremer L: Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts. MAbs. 6:1000–1012. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khandelwal N, Breinig M, Speck T, Michels T, Kreutzer C, Sorrentino A, Sharma AK, Umansky L, Conrad H, Poschke I, et al: A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. EMBO Mol Med. 7:450–463. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Zhang L, Wu R, Han R, Jia Y, Jiang Z, Cheng M, Gan J, Tao X and Zhang Q: Specific killing of CCR9 high-expressing acute T lymphocytic leukemia cells by CCL25 fused with PE38 toxin. Leuk Res. 35:1254–1260. 2011. View Article : Google Scholar : PubMed/NCBI | |
Youn BS, Kim YJ, Mantel C, Yu KY and Broxmeyer HE: Blocking of c-FLIP(L)-independent cycloheximide-induced apoptosis or Fas-mediated apoptosis by the CC chemokine receptor 9/TECK interaction. Blood. 98:925–933. 2001. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Tu Z, Xiong M, Tembo K, Zhou L, Liu P, Pan S, Xiong J, Yang X, Leng J, et al: Wnt5a and CCL25 promote adult T-cell acute lymphoblastic leukemia cell migration, invasion and metastasis. Oncotarget. 8:39033–39047. 2017.PubMed/NCBI | |
Shang L, Thirunarayanan N, Viejo-Borbolla A, Martin AP, Bogunovic M, Marchesi F, Unkeless JC, Ho Y, Furtado GC, Alcami A, et al: Expression of the chemokine binding protein M3 promotes marked changes in the accumulation of specific leukocytes subsets within the intestine. Gastroenterology. 137:1006–1018, 1018.e1-3. 2009. View Article : Google Scholar : PubMed/NCBI |