1
|
Stewart BW and Wild CP: World cancer
report 2014. World Health Organization. Chapter 1.1 ISBN
9283204298. 2014
|
2
|
Su T, Suzui M, Wang L, Lin CS, Xing WQ and
Weinstein IB: Deletion of histidine triad nucleotide-binding
protein 1/PKC-interacting protein in mice enhances cell growth and
carcinogenesis. Proc Natl Acad Sci USA. 100:7824–7829. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Li H, Zhang Y, Su T, Santella RM and
Weinstein IB: Hint1 is a haplo-insufficient tumor suppressor in
mice. Oncogene. 25:713–721. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cen B, Li H and Weinstein IB: Histidine
triad nucleotide-binding protein 1 up-regulates cellular levels of
p27KIP1 by targeting ScfSKP2 ubiquitin ligase and Src. J Biol Chem.
284:5265–5276. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Weiske J and Huber O: The histidine triad
protein Hint1 interacts with pontin and reptin and inhibits
TCF-beta-catenin-mediated transcription. J Cell Sci. 118:3117–3129.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang H, Wei X, Su X, Qiao F, Xu Z, Gu D,
Fan H and Chen J: Clinical significance of expression of Hint1 and
potential epigenetic mechanism in gastric cancer. Int J Oncol.
38:1557–1564. 2011.PubMed/NCBI
|
7
|
Weiske J and Huber O: The histidine triad
protein Hint1 triggers apoptosis independent of its enzymatic
activity. J Biol Chem. 281:27356–27366. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang L, Zhang Y, Li H, Xu Z, Santella RM
and Weinstein IB: Hint1 inhibits growth and activator protein-1
activity in human colon cancer cells. Cancer Res. 67:4700–4708.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li H, Balajee AS, Su T, Cen B, Hei TK and
Weinstein IB: The HINT1 tumor suppressor regulates both gamma-H2AX
and ATM in response to DNA damage. J Cell Biol. 183:253–265. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Samatar AA and Poulikakos PI: Targeting
RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug
Discov. 13:928–942. 2014. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Huang G, Tang B, Tang K, Dong X, Deng J,
Liao L, Liao Z, Yang H and He S: Isoquercitrin inhibits the
progression of liver cancer in vivo and in vitro via the MAPK
signalling pathway. Oncol Rep. 31:2377–2384. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Smith J, Tho LM, Xu N and Gillespie DA:
The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and
cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cheng YH, Li LA, Lin P, Cheng LC, Hung CH,
Chang NW and Lin C: Baicalein induces G1 arrest in oral cancer
cells by enhancing the degradation of cyclin D1 and activating AhR
to decrease Rb phosphorylation. Toxicol Appl Pharmacol.
263:360–367. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu H, Duan Z, Zheng H, Hu D, Li M, Tao Y,
Bode AM, Dong Z and Cao Y: EBV-encoded LMP1 upregulates Igκ
3′enhancer activity and Igκ expression in nasopharyngeal cancer
cells by activating the Ets-1 through ERKs signaling. PLoS One.
7:e326242012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Park KH, Shin KS, Zhao TT, Park HJ, Lee KE
and Lee MK: L-DOPA modulates cell viability through the ERK-c-Jun
system in PC12 and dopaminergic neuronal cells. Neuropharmacology.
101:87–97. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwon YW, Jang S, Paek JS, Lee JW, Cho HJ,
Yang HM and Kim HS: E-Ras improves the efficiency of reprogramming
by facilitating cell cycle progression through JNK-Sp1 pathway.
Stem Cell Res. 15:481–494. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chuang JI, Huang JY, Tsai SJ, Sun HS, Yang
SH, Chuang PC, Huang BM and Ching CH: FGF9-induced changes in
cellular redox status and HO-1 upregulation are FGFR-dependent and
proceed through both ERK and AKT to induce CREB and Nrf2
activation. Free Radic Biol Med. 89:274–286. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tsao GSW, Zhu DD, Zhang J and Deng W:
Abstract 1046: The role of NF-kB activation in the immortalization
of nasopharyngeal epithelial cells. Cancer Res. 75:2015. View Article : Google Scholar
|
20
|
Mizumoto Y, Kyo S, Kiyono T, Takakura M,
Nakamura M, Maida Y, Mori N, Bono Y, Sakurai H and Inoue M:
Activation of NF-kappaB is a novel target of KRAS-induced
endometrial carcinogenesis. Clin Cancer Res. 17:1341–1350. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee Y, Dominy JE, Choi YJ, Jurczak M,
Tolliday N, Camporez JP, Chim H, Lim JH, Ruan HB, Yang X, et al:
Cyclin D1-Cdk4 controls glucose metabolism independently of cell
cycle progression. Nature. 510:547–551. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Musgrove EA, Caldon CE, Barraclough J,
Stone A and Sutherland RL: Cyclin D as a therapeutic target in
cancer. Nat Rev Cancer. 11:558–572. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Peurala E, Koivunen P, Haapasaari KM,
Bloigu R and Jukkola-Vuorinen A: The prognostic significance and
value of cyclin D1, CDK4 and p16 in human breast cancer. Breast
Cancer Res. 15:R52013. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Choi YJ, Li X, Hydbring P, Sanda T,
Stefano J, Christie AL, Signoretti S, Look AT, Kung AL, von Boehmer
H and Sicinski P: The requirement for cyclin D function in tumor
maintenance. Cancer Cell. 22:438–451. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim AL, Athar M, Bickers DR and Gautier J:
Ultraviolet-B-induced G1 arrest is mediated by downregulation of
cyclin-dependent kinase 4 in transformed keratinocytes lacking
functional p53. J Invest Dermatol. 118:818–824. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shimura T, Ochiai Y, Noma N, Oikawa T,
Sano Y and Fukumoto M: Cyclin D1 overexpression perturbs DNA
replication and induces replication-associated DNA double-strand
breaks in acquired radioresistant cells. Cell Cycle. 12:773–782.
2013. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Shimura T, Fukumoto M and Kunugita N: The
role of cyclin D1 in response to long-term exposure to ionizing
radiation. Cell Cycle. 12:2738–2743. 2013. View Article : Google Scholar : PubMed/NCBI
|