1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Coleman RE: Metastatic bone disease:
Clinical features, pathophysiology and treatment strategies. Cancer
Treat Rev. 27:165–176. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Selvaggi G and Scagliotti GV: Management
of bone metastases in cancer: A review. Crit Rev Oncol Hematol.
56:365–378. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sutcliffe P, Connock M, Shyangdan D, Court
R, Kandala NB and Clarke A: A systematic review of evidence on
malignant spinal metastases: natural history and technologies for
identifying patients at high risk of vertebral fracture and spinal
cord compression. Health Technol Assess. 17:1–274. 2013. View Article : Google Scholar
|
6
|
Kelly ML, Kshettry VR, Rosenbaum BP,
Seicean A and Weil RJ: Effect of a randomized controlled trial on
the surgical treatment of spinal metastasis, 2000 through 2010: A
population-based cohort study. Cancer. 120:901–908. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Nguyen DX, Bos PD and Massagué J:
Metastasis: From dissemination to organ-specific colonization. Nat
Rev Cancer. 9:274–284. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Sutherland A, Forsyth A, Cong Y, Grant L,
Juan TH, Lee JK, Klimowicz A, Petrillo SK, Hu J, Chan A, et al: The
role of prolactin in bone metastasis and breast cancer
cell-mediated osteoclast differentiation. J Natl Cancer Inst.
108:2015.PubMed/NCBI
|
9
|
von Moos R, Sternberg C, Body JJ and
Bokemeyer C: Reducing the burden of bone metastases: Current
concepts and treatment options. Support Care Cancer. 21:1773–1783.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li BT, Wong MH and Pavlakis N: Treatment
and prevention of bone metastases from breast cancer: A
comprehensive review of evidence for clinical practice. J Clin Med.
3:1–24. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Damiani E and Ullrich SE: Understanding
the connection between platelet-activating factor, a UV-induced
lipid mediator of inflammation, immune suppression and skin cancer.
Prog Lipid Res. 63:14–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pałgan K and Bartuzi Z: Platelet
activating factor in allergies. Int J Immunopathol Pharmacol.
28:584–589. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu Y, Shields LBE, Gao Z, Wang Y, Zhang
YP, Chu T, Zhu Q, Shields CB and Cai J: Current understanding of
platelet-activating factor signaling in central nervous system
diseases. Mol Neurobiol. 54:5563–5572. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
McHowat J, Gullickson G, Hoover RG, Sharma
J, Turk J and Kornbluth J: Platelet-activating factor and
metastasis: Calcium-independent phospholipase A2β deficiency
protects against breast cancer metastasis to the lung. Am J Physiol
Cell Physiol. 300:C825–C832. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu JT and Kral JG: The NF-kappaB/IkappaB
signaling system: A molecular target in breast cancer therapy. J
Surg Res. 123:158–169. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang X, Jung YS, Jun S, Lee S, Wang W,
Schneider A, Oh Sun Y, Lin SH, Park BJ, Chen J, et al: PAF-Wnt
signaling-induced cell plasticity is required for maintenance of
breast cancer cell stemness. Nat Commun. 7:106332016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bussolati B, Biancone L, Cassoni P, Russo
S, Rola-Pleszczynski M, Montrucchio G and Camussi G: PAF produced
by human breast cancer cells promotes migration and proliferation
of tumor cells and neo-angiogenesis. Am J Pathol. 157:1713–1725.
2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Anandi VL, Ashiq KA, Nitheesh K and Lahiri
M: Platelet-activating factor promotes motility in breast cancer
cells and disrupts non-transformed breast acinar structures. Oncol
Rep. 35:179–188. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Langdahl B, Ferrari S and Dempster DW:
Bone modeling and remodeling: Potential as therapeutic targets for
the treatment of osteoporosis. Ther Adv Musculoskelet Dis.
8:225–235. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zheng ZG, Wood DA, Sims SM and Dixon SJ:
Platelet-activating factor stimulates resorption by rabbit
osteoclasts in vitro. Am J Physiol. 264:E74–E81. 1993.PubMed/NCBI
|
21
|
Wood DA, Hapak LK, Sims SM and Dixon SJ:
Direct effects of platelet-activating factor on isolated rat
osteoclasts. Rapid elevation of intracellular free calcium and
transient retraction of pseudopods. J Biol Chem. 266:15369–15376.
1991.PubMed/NCBI
|
22
|
Kim H, Kim BJ, Ahn SH, Lee SH and Koh JM:
Higher plasma platelet-activating factor levels are associated with
increased risk of vertebral fracture and lower bone mineral density
in postmenopausal women. J Bone Miner Metab. 33:701–707. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang SP, Lin LC, Wu YT and Tsai TH:
Pharmacokinetics of kadsurenone and its interaction with
cyclosporin A in rats using a combined HPLC and microdialysis
system. J Chromatogr B Analyt Technol Biomed Life Sci. 877:247–252.
2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang N, Li R, Yu H, Shi D, Dong N, Zhang
S and Wang H: Development of an LC-MS/MS method for quantification
of kadsurenone in rat plasma and its application to a
pharmacokinetic study. Biomed Chromatogr. 27:1754–1758. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu
W, Giri DD, Viale A, Olshen AB, Gerald WL and Massagué J: Genes
that mediate breast cancer metastasis to lung. Nature. 436:518–524.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hikiji H, Ishii S, Shindou H, Takato T and
Shimizu T: Absence of platelet-activating factor receptor protects
mice from osteoporosis following ovariectomy. J Clin Invest.
114:85–93. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Johnson RW, Finger EC, Olcina MM, Vilalta
M, Aguilera T, Miao Y, Merkel AR, Johnson JR, Sterling JA, Wu JY
and Giaccia AJ: Induction of LIFR confers a dormancy phenotype in
breast cancer cells disseminated to the bone marrow. Nat Cell Biol.
18:1078–1089. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kang Y, Siegel PM, Shu W, Drobnjak M,
Kakonen SM, Cordón-Cardo C, Guise TA and Massagué J: A multigenic
program mediating breast cancer metastasis to bone. Cancer Cell.
3:537–549. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Roodman GD: Mechanisms of bone metastasis.
N Engl J Med. 350:1655–1664. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Macedo F, Ladeira K, Pinho F, Saraiva N,
Bonito N, Pinto L and Goncalves F: Bone metastases: An overview.
Oncol Rev. 11:3212017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Trémollieres FA, Ceausu I, Depypere H,
Lambrinoudaki I, Mueck A, Pérez-López FR, van der Schouw YT,
Senturk LM, Simoncini T, Stevenson JC, et al: Osteoporosis
management in patients with breast cancer: EMAS position statement.
Maturitas. 95:65–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Van Acker HH, Anguille S, Willemen Y,
Smits EL and Van Tendeloo VF: Bisphosphonates for cancer treatment:
Mechanisms of action and lessons from clinical trials. Pharmacol
Ther. 158:24–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Santini D, Stumbo L, Spoto C, D'Onofrio L,
Pantano F, Iuliani M, Fioramonti M, Zoccoli A, Ribelli G, Virzì V,
et al: Bisphosphonates as anticancer agents in early breast cancer:
preclinical and clinical evidence. Breast Cancer Res. 17:1212015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Singh P, Singh IN, Mondal SC, Singh L and
Garg VK: Platelet-activating factor (PAF)-antagonists of natural
origin. Fitoterapia. 84:180–201. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tsoupras AB, Fragopoulou E, Nomikos T,
Iatrou C, Antonopoulou S and Demopoulos CA: Characterization of the
de novo biosynthetic enzyme of platelet activating factor,
DDT-insensitive cholinephosphotransferase, of human mesangial
cells. Mediators Inflamm. 2007:276832007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Weilbaecher KN, Guise TA and McCauley LK:
Cancer to bone: A fatal attraction. Nat Rev Cancer. 11:411–425.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kasperska-Zajac A, Brzoza Z and Rogala B:
Platelet-activating factor (PAF): A review of its role in asthma
and clinical efficacy of PAF antagonists in the disease therapy.
Recent Pat Inflamm Allergy Drug Discov. 2:72–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Imrie CW and McKay CJ: The possible role
of platelet-activating factor antagonist therapy in the management
of severe acute pancreatitis. Baillieres Best Pract Res Clin
Gastroenterol. 13:357–364. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Waning DL and Guise TA: Molecular
mechanisms of bone metastasis and associated muscle weakness. Clin
Cancer Res. 20:3071–3077. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cox TR, Gartland A and Erler JT: Lysyl
oxidase, a targetable secreted molecule involved in cancer
metastasis. Cancer Res. 76:188–192. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cox TR, Rumney RM, Schoof EM, Perryman L,
Høye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR, et al:
The hypoxic cancer secretome induces pre-metastatic bone lesions
through lysyl oxidase. Nature. 522:106–110. 2015. View Article : Google Scholar : PubMed/NCBI
|