1
|
Podoltsev NA, Stahl M, Zeidan AM and Gore
SD: Selecting initial treatment of acute myeloid leukaemia in older
adults. Blood Rev. 31:43–62. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Döhner H, Weisdorf DJ and Bloomfield CD:
Acute myeloid leukemia. N Engl J Med. 373:1136–1152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Döhner H, Estey EH, Amadori S, Appelbaum
FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson
RA, et al: Diagnosis and management of acute myeloid leukemia in
adults: Recommendations from an international expert panel, on
behalf of the European LeukemiaNet. Blood. 115:453–474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Yamada K, Furusawa S, Saito K, Waga K,
Koike T, Arimura H, Aoyagi A, Yamato H, Sakuma H, Tsunogake S, et
al: Concurrent use of granulocyte colony-stimulating factor with
low-dose cytosine arabinoside and aclarubicin for previously
treated acute myelogenous leukemia: A pilot study. Leukemia.
9:10–14. 1995.PubMed/NCBI
|
5
|
Minakata D, Fujiwara S, Ito S, Mashima K,
Umino K, Nakano H, Kawasaki Y, Sugimoto M, Yamasaki R, Yamamoto C,
et al: A low-dose cytarabine, aclarubicin and granulocyte
colony-stimulating factor priming regimen versus a daunorubicin
plus cytarabine regimen as induction therapy for older patients
with acute myeloid leukemia: A propensity score analysis. Leuk Res.
42:82–87. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jin J, Chen J, Suo S, Qian W, Meng H, Mai
W, Tong H, Huang J, Yu W, Wei J and Lou Y: Low-dose cytarabine,
aclarubicin and granulocyte colony-stimulating factor priming
regimen versus idarubicin plus cytarabine regimen as induction
therapy for older patients with acute myeloid leukemia. Leuk
Lymphoma. 56:1691–1697. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang Y, Li W, Chen S, Qiu H, Sun A and Wu
D: Salvage chemotherapy with low-dose cytarabine and aclarubicin in
combination with granulocyte colony-stimulating factor priming in
patients with refractory or relapsed acute myeloid leukemia with
translocation (8;21). Leuk Res. 35:604–607. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu L, Qu Q, Jiao W, Zhang Y, Li X, Ding C
and Wu D: Increasing aclarubicin dose in low-dose cytarabine and
aclarubicin in combination with granulocyte colony-stimulating
factor (CAG regimen) is efficacious as salvage chemotherapy for
relapsed/refractory mixed-phenotype acute leukemia. Leuk Res.
39:805–811. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ma X and Wang J, Xu Y, Zhang W, Liu J, Cao
X, He A, Wang F, Gu L, Lei B and Wang J: Dose-enhanced combined
priming regimens for refractory acute myeloid leukemia and
middle-and-high-risk myelodysplastic syndrome: A single-center,
retrospective cohort study. Onco Targets Ther. 9:3661–3669. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Miyauchi J, Kelleher CA, Wang C, Minkin S
and McCulloch EA: Growth factors influence the sensitivity of
leukemic stem cells to cytosine arabinoside in culture. Blood.
73:1272–1278. 1989.PubMed/NCBI
|
11
|
Tafuri A and Andreeff M: Kinetic rationale
for cytokine-induced recruitment of myeloblastic leukemia followed
by cycle-specific chemotherapy in vitro. Leukemia. 4:826–834.
1990.PubMed/NCBI
|
12
|
te Boekhorst PA, Löwenberg B, Vlastuin M
and Sonneveld P: Enhanced chemosensitivity of clonogenic blasts
from patients with acute myeloid leukemia by G-CSF, IL-3 or GM-CSF
stimulation. Leukemia. 7:1191–1198. 1993.PubMed/NCBI
|
13
|
Shen ZH, Zeng DF, Ma YY, Zhang X, Zhang C
and Kong PY: Are there any new insights for G-CSF and/or AMD3100 in
chemotherapy of haematological malignants? Med Oncol. 32:2622015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim CH and Broxmeyer HE: In vitro behavior
of hematopoietic progenitor cells under the influence of
chemoattractants: Stromal cell-derived factor-1, steel factor, and
the bone marrow environment. Blood. 91:100–110. 1998.PubMed/NCBI
|
15
|
Jo DY, Rafii S, Hamada T and Moore MA:
Chemotaxis of primitive hematopoietic cells in response to stromal
cell-derived factor-1. J Clin Invest. 105:101–111. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wright DE, Bowman EP, Wagers AJ, Butcher
EC and Weissman IL: Hematopoietic stem cells are uniquely selective
in their migratory response to chemokines. J Exp Med.
195:1145–1154. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Peled A, Petit I, Kollet O, Magid M,
Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, et al:
Dependence of human stem cell engraftment and repopulation of
NOD/SCID mice on CXCR4. Science. 283:845–848. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lapidot T and Kollet O: The essential
roles of the chemokine SDF-1 and its receptor CXCR4 in human stem
cell homing and repopulation of transplanted immune-deficient
NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 16:1992–2003. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Broxmeyer HE, Cooper S, Kohli L, Hangoc G,
Lee Y, Mantel C, Clapp DW and Kim CH: Transgenic expression of
stromal cell-derived factor-1/CXC chemokine ligand 12 enhances
myeloid progenitor cell survival/antiapoptosis in vitro in response
to growth factor withdrawal and enhances myelopoiesis in vivo. J
Immunol. 170:421–429. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Broxmeyer HE, Kohli L, Kim CH, Lee Y,
Mantel C, Cooper S, Hangoc G, Shaheen M, Li X and Clapp DW: Stromal
cell-derived factor-1/CXCL12 directly enhances
survival/antiapoptosis of myeloid progenitor cells through CXCR4
and G(alpha)i proteins and enhances engraftment of competitive,
repopulating stem cells. J Leukoc Biol. 73:630–638. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling
X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, et al:
Targeting the leukemia microenvironment by CXCR4 inhibition
overcomes resistance to kinase inhibitors and chemotherapy in AML.
Blood. 113:6215–6224. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Saba F, Soleimani M, Kaviani S, Abroun S,
Sayyadipoor F, Behrouz S and Saki N: G-CSF induces up-regulation of
CXCR4 expression in human hematopoietic stem cells by
beta-adrenergic agonist. Hematology. 2014.
|
23
|
De La Luz, Sierra M, Gasperini P,
McCormick PJ, Zhu J and Tosato G: Transcription factor Gfi-1
induced by G-CSF is a negative regulator of CXCR4 in myeloid cells.
Blood. 110:2276–2285. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jadidi-Niaragh F, Yousefi M, Memarian A,
Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, Jeddi-Tehrani M and
Shokri F: Increased frequency of CD8+ and
CD4+ regulatory T cells in chronic lymphocytic leukemia:
Association with disease progression. Cancer Invest. 31:121–131.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Filipazzi P, Huber V and Rivoltini L:
Phenotype, function and clinical implications of myeloid-derived
suppressor cells in cancer patients. Cancer Immunol Immunother.
61:255–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Raggi C, Mousa HS, Corrent M, Sica A and
Invernizzi P: Cancer stem cells and tumor-associated macrophages: A
roadmap for multitargeting strategies. Oncogene. 35:671–682. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zou LH, Barnett B, Safah H, LaRussa VF,
Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ and Zou W:
Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that
traffic through CXCL12/CXCR4 signals. Cancer Res. 64:8451–8455.
2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tabe Y and Konopleva M: Advances in
understanding the leukaemia microenvironment. Br J Haematol.
164:767–778. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek
T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al:
Granulocyte-colony stimulating factor promotes lung metastasis
through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci
USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bayne LJ, Beatty GL, Jhala N, Clark CE,
Rhim AD, Stanger BZ and Vonderheide RH: Tumor-derived
granulocyte-macrophage colony-stimulating factor regulates myeloid
inflammation and T cell immunity in pancreatic cancer. Cancer Cell.
21:822–835. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kohanbash G, McKaveney K, Sakaki M, Ueda
R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR and Okada H: GM-CSF
promotes the immunosuppressive activity of glioma-infiltrating
myeloid cells through interleukin-4 receptor-α. Cancer Res.
73:6413–6423. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lin JP, Yang JS, Lu CC, Chiang JH, Wu CL,
Lin JJ, Lin HL, Yang MD, Liu KC, Chiu TH and Chung JG: Rutin
inhibits the proliferation of murine leukemia WEHI-3 cells in vivo
and promotes immune response in vivo. Leuk Res. 33:823–828. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wen YF, Yang JS, Kuo SC, Hwang CS, Chung
JG, Wu HC, Huang WW, Jhan JH, Lin CM and Chen HJ: Investigation of
anti-leukemia molecular mechanism of ITR-284, a carboxamide analog,
in leukemia cells and its effects in WEHI-3 leukemia mice. Biochem
Pharmacol. 79:389–398. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mohan S, Abdul AB, Abdelwahab SI,
Al-Zubairi AS, Sukari Aspollah M, Abdullah R, Taha MM, Beng NK and
Isa NM: Typhonium flagelliforme inhibits the proliferation of
murine leukemia WEHI-3 cells in vitro and induces apoptosis in
vivo. Leuk Res. 34:1483–1492. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mills KH: Regulatory T cells: Friend or
foe in immunity to infection? Nat Rev Immunol. 4:841–855. 2004.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wan YY and Flavell RA: TGF-beta and
regulatory T cell in immunity and autoimmunity. J Clin Immunol.
28:647–659. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Romano A, Parrinello NL, Vetro C, Tibullo
D, Giallongo C, La Cava P, Chiarenza A, Motta G, Caruso AL, Villari
L, et al: The prognostic value of the myeloid-mediated
immunosuppression marker Arginase-1 in classic Hodgkin lymphoma.
Oncotarget. 7:67333–67346. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Munder M: Arginase: An emerging key player
in the mammalian immune system. Br J Pharmacol. 158:638–651. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Meads MB, Hazlehurst LA and Dalton WS: The
bone marrow microenvironment as a tumor sanctuary and contributor
to drug resistance. Clin Cancer Res. 14:2519–2526. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tavor S and Petit I: Can inhibition of the
SDF-1/CXCR4 axis eradicate acute leukemia? Semin Cancer Biol.
20:178–185. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ye M, Zhang H, Yang H, Koche R, Staber PB,
Cusan M, Levantini E, Welner RS, Bach CS, Zhang J, et al:
Hematopoietic differentiation is required for initiation of acute
myeloid leukemia. Cell Stem Cell. 17:611–623. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Saito Y, Uchida N, Tanaka S, Suzuki N,
Tomizawa-Murasawa M, Sone A, Najima Y, Takagi S, Aoki Y, Wake A, et
al: Induction of cell cycle entry eliminates human leukemia stem
cells in a mouse model of AML. Nat Biotechnol. 28:275–280. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Konopleva MY and Jordan CT: Leukemia stem
cells and microenvironment: Biology and therapeutic targeting. J
Clin Oncol. 29:591–599. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wei G, Ni W, Chiao JW, Cai Z, Huang H and
Liu D: A meta-analysis of CA G(cytarabine, aclarubicin, G-CSF)
regimen for the treatment of 1029 patients with acute myeloid
leukemia and myelodysplastic syndrome. J Hematol Oncol. 4:462011.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu L, Zhang Y, Jin Z, Zhang X, Zhao G, Si
Y, Lin G, Ma A, Sun Y, Wang L and Wu D: Increasing the dose
ofaclarubicin in low-dose cytarabine and aclarubicin in combination
with granulocyte colony-stimulating factor (CAG regimen) can safely
andeffectively treat relapsed or refractory acute myeloid leukemia.
Int J Hematol. 99:603–608. 2014. View Article : Google Scholar : PubMed/NCBI
|