1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen YF, Wang SY, Yang YH, Zheng J, Liu T
and Wang L: Targeting HSF1 leads to an antitumor effect in human
epithelial ovarian cancer. Int J Mol Med. 39:1564–1570. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhou Z, Li Y, Jia Q, Wang Z, Wang X, Hu J
and Xiao J: Heat shock transcription factor 1 promotes the
proliferation, migration and invasion of osteosarcoma cells. Cell
Prolif. 50:2017. View Article : Google Scholar
|
4
|
Wang B, Lee CW, Witt A, Thakkar A and Ince
TA: Heat shock factor 1 induces cancer stem cell phenotype in
breast cancer cell lines. Breast Cancer Res Treat. 153:57–66. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Cui J, Tian H and Chen G: Upregulation of
nuclear heat shock factor 1 contributes to tumor angiogenesis and
poor survival in patients with non-small cell lung cancer. Ann
Thorac Surg. 100:465–472. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tsukao Y, Yamasaki M, Miyazaki Y, Makino
T, Takahashi T, Kurokawa Y, Miyata H, Nakajima K, Takiguchi S,
Mimori K, et al: Overexpression of heat-shock factor 1 is
associated with a poor prognosis in esophageal squamous cell
carcinoma. Oncol Lett. 13:1819–1825. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim SA, Kwon SM, Yoon JH and Ahn SG: The
antitumor effect of PLK1 and HSF1 double knockdown on human oral
carcinoma cells. Int J Oncol. 36:867–872. 2010.PubMed/NCBI
|
8
|
Ishiwata J, Kasamatsu A, Sakuma K, Iyoda
M, Yamatoji M, Usukura K, Ishige S, Shimizu T, Yamano Y, Ogawara K,
et al: State of heat shock factor 1 expression as a putative
diagnostic marker for oral squamous cell carcinoma. Int J Oncol.
40:47–52. 2012.PubMed/NCBI
|
9
|
Nguyen HA and Kim SA:
2′-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated
BAG3 expression. Int J Oncol. 50:283–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cigliano A, Wang C, Pilo MG, Szydlowska M,
Brozzetti S, Latte G, Pes GM, Pascale RM, Seddaiu MA, Vidili G, et
al: Inhibition of HSF1 suppresses the growth of hepatocarcinoma
cell lines in vitro and AKT-driven hepatocarcinogenesis in
mice. Oncotarget. 8:54149–54159. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dong C, Zhang L, Sun R, Liu J, Yin H, Li
X, Zheng X and Zeng H: Role of thioredoxin reductase 1 in
dysplastic transformation of human breast epithelial cells
triggered by chronic oxidative stress. Sci Rep. 6:368602016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yan X, Chen X, Liang H, Deng T, Chen W,
Zhang S, Liu M, Gao X, Liu Y, Zhao C, et al: miR-143 and miR-145
synergistically regulate ERBB3 to suppress cell proliferation and
invasion in breast cancer. Mol Cancer. 13:2202014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tao WY, Wang CY, Sun YH, Su YH, Pang D and
Zhang GQ: MicroRNA-34c suppresses breast cancer migration and
invasion by targeting GIT1. J Cancer. 7:1653–1662. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Antonietti P, Linder B, Hehlgans S,
Mildenberger IC, Burger MC, Fulda S, Steinbach JP, Gessler F, Rödel
F, Mittelbronn M and Kögel D: Interference with the HSF1/HSP70/BAG3
pathway primes glioma cells to matrix detachment and BH3
mimetic-induced apoptosis. Mol Cancer Ther. 16:156–168. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Sawai M, Ishikawa Y, Ota A and Sakurai H:
The proto-oncogene JUN is a target of the heat shock transcription
factor HSF1. FEBS J. 280:6672–6680. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chou SD, Prince T, Gong J and Calderwood
SK: mTOR is essential for the proteotoxic stress response, HSF1
activation and heat shock protein synthesis. PLoS One.
7:e396792012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nicoletti F, Fagone P, Meroni P, McCubrey
J and Bendtzen K: mTOR as a multifunctional therapeutic target in
HIV infection. Drug Discov Today. 16:715–721. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sokolosky ML, Stadelman KM, Chappell WH,
Abrams SL, Martelli AM, Stivala F, Libra M, Nicoletti F, Drobot LB,
Franklin RA, et al: Involvement of Akt-1 and mTOR in sensitivity of
breast cancer to targeted therapy. Oncotarget. 2:538–550. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Horibe T, Torisawa A, Kohno M and Kawakami
K: Synergetic cytotoxic activity toward breast cancer cells
enhanced by the combination of Antp-TPR hybrid peptide targeting
Hsp90 and Hsp70-targeted peptide. BMC Cancer. 14:6152014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Proia DA and Kaufmann GF: Targeting
heat-shock protein 90 (HSP90) as a complementary strategy to immune
checkpoint blockade for cancer therapy. Cancer Immunol Res.
3:583–589. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Teymournejad O, Mobarez AM, Hassan ZM and
Talebi Bezmin Abadi A: Binding of the Helicobacter pylori OipA
causes apoptosis of host cells via modulation of Bax/Bcl-2 levels.
Sci Rep. 7:80362017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nobre CC, de Araújo JM, Fernandes TA,
Cobucci RN, Lanza DC, Andrade VS and Fernandes JV: Macrophage
migration inhibitory factor (MIF): Biological activities and
relation with cancer. Pathol Oncol Res. 23:235–244. 2017.
View Article : Google Scholar : PubMed/NCBI
|