1
|
Shah JP and Gil Z: Current concepts in
management of oral cancer-surgery. Oral Oncol. 45:394–401. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Dumache R, Rogobete AF, Andreescu N and
Puiu M: Genetic and epigenetic biomarkers of molecular alterations
in oral carcinogenesis. Clin Lab. 61:1373–1381. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nagata M, Noman AA, Suzuki K, Kurita H,
Ohnishi M, Ohyama T, Kitamura N, Kobayashi T, Uematsu K, Takahashi
K, et al: ITGA3 and ITGB4 expression biomarkers estimate the risks
of locoregional and hematogenous dissemination of oral squamous
cell carcinoma. BMC Cancer. 13:4102013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Elashoff D, Zhou H, Reiss J, Wang J, Xiao
H, Henson B, Hu S, Arellano M, Sinha U, Le A, et al: Prevalidation
of salivary biomarkers for oral cancer detection. Cancer Epidemiol
Biomarkers Prev. 21:664–672. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yen CY, Chen CH, Chang CH, Tseng HF, Liu
SY, Chuang LY, Wen CH and Chang HW: Matrix metalloproteinases (MMP)
1 and MMP10 but not MMP12 are potential oral cancer markers.
Biomarkers. 14:244–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yen CY, Huang CY, Hou MF, Yang YH, Chang
CH, Huang HW, Chen CH and Chang HW: Evaluating the performance of
fibronectin 1 (FN1), integrin α4β1 (ITGA4), syndecan-2 (SDC2) and
glycoprotein CD44 as the potential biomarkers of oral squamous cell
carcinoma (OSCC). Biomarkers. 18:63–72. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang S, Sun M, Gu C, Wang X, Chen D, Zhao
E, Jiao X and Zheng J: Expression of CD163, interleukin-10, and
interferon-gamma in oral squamous cell carcinoma: Mutual
relationships and prognostic implications. Eur J Oral Sci.
122:202–209. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Barczyk M, Carracedo S and Gullberg D:
Integrins. Cell Tissue Res. 339:269–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hood JD and Cheresh DA: Role of integrins
in cell invasion and migration. Nat Rev Cancer. 2:91–100. 2002.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Desgrosellier JS and Cheresh DA: Integrins
in cancer: Biological implications and therapeutic opportunities.
Nat Rev Cancer. 10:9–22. 2010. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Malinin NL, Pluskota E and Byzova TV:
Integrin signaling in vascular function. Curr Opin Hematol.
19:206–211. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mizejewski GJ: Role of integrins in
cancer: Survey of expression patterns. Proc Soc Exp Biol Med.
222:124–138. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hwang R and Varner J: The role of
integrins in tumor angiogenesis. Hematol Oncol Clin North Am.
18:991–1006, vii. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hynes RO: Integrins: Versatility,
modulation, and signaling in cell adhesion. Cell. 69:11–25. 1992.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yamaguchi M, Ebihara N, Shima N, Kimoto M,
Funaki T, Yokoo S, Murakami A and Yamagami S: Adhesion, migration,
and proliferation of cultured human corneal endothelial cells by
laminin-5. Invest Ophthalmol Vis Sci. 52:679–684. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
DiPersio CM, Hodivala-Dilke KM, Jaenisch
R, Kreidberg JA and Hynes RO: alpha3beta1 Integrin is required for
normal development of the epidermal basement membrane. J Cell Biol.
137:729–742. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kreidberg JA: Functions of alpha3beta1
integrin. Curr Opin Cell Biol. 12:548–553. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tsuji T: Physiological and pathological
roles of alpha3beta1 integrin. J Membr Biol. 200:115–132. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Takenaka K, Shibuya M, Takeda Y, Hibino S,
Gemma A, Ono Y and Kudoh S: Altered expression and function of
beta1 integrins in a highly metastatic human lung adenocarcinoma
cell line. Int J Oncol. 17:1187–1194. 2000.PubMed/NCBI
|
20
|
Coopman PJ, Thomas DM, Gehlsen KR and
Mueller SC: Integrin alpha 3 beta 1 participates in the
phagocytosis of extracellular matrix molecules by human breast
cancer cells. Mol Biol Cell. 7:1789–1804. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Adachi M, Taki T, Higashiyama M, Kohno N,
Inufusa H and Miyake M: Significance of integrin alpha5 gene
expression as a prognostic factor in node-negative non-small cell
lung cancer. Clin Cancer Res. 6:96–101. 2000.PubMed/NCBI
|
22
|
Ryu MH, Park HM, Chung J, Lee CH and Park
HR: Hypoxia-inducible factor-1alpha mediates oral squamous cell
carcinoma invasion via upregulation of alpha5 integrin and
fibronectin. Biochem Biophys Res Commun. 393:11–15. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bandyopadhyay A and Raghavan S: Defining
the role of integrin alphavbeta6 in cancer. Curr Drug Targets.
10:645–652. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ramos DM, Dang D and Sadler S: The role of
the integrin alpha v beta6 in regulating the epithelial to
mesenchymal transition in oral cancer. Anticancer Res. 29:125–130.
2009.PubMed/NCBI
|
25
|
Ramos DM, But M, Regezi J, Schmidt BL,
Atakilit A, Dang D, Ellis D, Jordan R and Li X: Expression of
integrin beta 6 enhances invasive behavior in oral squamous cell
carcinoma. Matrix Biol. 21:297–307. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Greene FL, Page DL, Fleming ID, Fritz AG,
Balch CM, Haller DG and Morrow M: AJCC cancer staging manual.
Springer-Verlag; New York: 2002, View Article : Google Scholar
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chang HW, Cheng CA, Gu DL, Chang CC, Su
SH, Wen CH, Chou YC, Chou TC, Yao CT, Tsai CL and Cheng CC:
High-throughput avian molecular sexing by SYBR green-based
real-time PCR combined with melting curve analysis. BMC Biotechnol.
8:122008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shih IeM, Salani R, Fiegl M, Wang TL,
Soosaipillai A, Marth C, Müller-Holzner E, Gastl G, Zhang Z and
Diamandis EP: Ovarian cancer specific kallikrein profile in
effusions. Gynecol Oncol. 105:501–507. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wong HS and Chang WC: Correlation of
clinical features and genetic profiles of stromal interaction
molecule 1 (STIM1) in colorectal cancers. Oncotarget.
6:42169–42182. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Castilho LS, Cotta FV, Bueno AC, Moreira
AN, Ferreira EF and Magalhães CS: Validation of DIAGNOdent laser
fluorescence and the international caries detection and assessment
system (ICDAS) in diagnosis of occlusal caries in permanent teeth:
An in vivo study. Eur J Oral Sci. 124:188–194. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang B, Zhang Z, Zhang X, Gao X,
Kernstine KH and Zhong L: Serological antibodies against LY6K as a
diagnostic biomarker in esophageal squamous cell carcinoma.
Biomarkers. 17:372–378. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cai C, Shi R, Gao Y, Zeng J, Wei M, Wang
H, Zheng W and Ma W: Reduced expression of sushi domain containing
2 is associated with progression of non-small cell lung cancer.
Oncol Lett. 10:3619–3624. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sun L, Xu S, Liang L, Zhao L and Zhang L:
Analysis of ROC: The value of HPV16 E6 protein in the diagnosis of
early stage cervical carcinoma and precancerous lesions. Oncol
Lett. 12:1769–1772. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kurozumi A, Goto Y, Matsushita R, Fukumoto
I, Kato M, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa
T and Seki N: Tumor-suppressive microRNA-223 inhibits cancer cell
migration and invasion by targeting ITGA3/ITGB1 signaling in
prostate cancer. Cancer Sci. 107:84–94. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng W, Jiang C and Li R: Integrin and
gene network analysis reveals that ITGA5 and ITGB1 are prognostic
in non-small-cell lung cancer. Onco Targets Ther. 9:2317–2327.
2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Desai K, Nair MG, Prabhu JS, Vinod A,
Korlimarla A, Rajarajan S, Aiyappa R, Kaluve RS, Alexander A, Hari
PS, et al: High expression of integrin β6 in association with the
Rho-Rac pathway identifies a poor prognostic subgroup within HER2
amplified breast cancers. Cancer Med. 5:2000–2011. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
He M, Zhao Y, Yi H, Sun H, Liu X and Ma S:
The combination of TP53INP1, TP53INP2 and AXIN2: Potential
biomarkers in papillary thyroid carcinoma. Endocrine. 48:712–717.
2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rozalski R, Gackowski D, Siomek-Gorecka A,
Starczak M, Modrzejewska M, Banaszkiewicz Z and Olinski R: Urinary
5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine as potential
biomarkers in patients with colorectal cancer. Biomarkers.
20:287–291. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
El-mezayen HA, Metwally FM and Darwish H:
A novel discriminant score based on tumor-associated trypsin
inhibitor for accurate diagnosis of metastasis in patients with
breast cancer. Tumour Biol. 35:2759–2767. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yin MZ, Tan S, Li X, Hou Y, Cao G, Li K,
Kou J and Lou G: Identification of phosphatidylcholine and
lysophosphatidylcholine as novel biomarkers for cervical cancers in
a prospective cohort study. Tumour Biol. 37:5485–5492. 2016.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Arcolia V, Journe F, Renaud F, Leteurtre
E, Gabius HJ, Remmelink M and Saussez S: Combination of galectin-3,
CK19 and HBME-1 immunostaining improves the diagnosis of thyroid
cancer. Oncol Lett. 14:4183–4189. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Michailidou E, Tzimagiorgis G,
Chatzopoulou F, Vahtsevanos K, Antoniadis K, Kouidou S, Markopoulos
A and Antoniades D: Salivary mRNA markers having the potential to
detect oral squamous cell carcinoma segregated from oral
leukoplakia with dysplasia. Cancer Epidemiol. 43:112–118. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Bu J, Bu X, Liu B, Chen F and Chen P:
Increased expression of tissue/salivary transgelin mRNA predicts
poor prognosis in patients with oral squamous cell carcinoma
(OSCC). Med Sci Monit. 21:2275–2281. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Grady LJ, Campbell WP and North AB: A
comparison of several procedures for reducing RNase contamination
in preparations of DNase and a particularly successful combination
of methods. Anal Biochem. 101:118–122. 1980. View Article : Google Scholar : PubMed/NCBI
|
46
|
Febbraio F, Andolfo A, Tanfani F, Briante
R, Gentile F, Formisano S, Vaccaro C, Scirè A, Bertoli E, Pucci P
and Nucci R: Thermal stability and aggregation of sulfolobus
solfataricus beta-glycosidase are dependent upon the
N-epsilon-methylation of specific lysyl residues: Critical role of
in vivo post-translational modifications. J Biol Chem.
279:10185–10194. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM
and Tsai CC: Betel quid chewing, cigarette smoking and alcohol
consumption related to oral cancer in Taiwan. J Oral Pathol Med.
24:450–453. 1995. View Article : Google Scholar : PubMed/NCBI
|
48
|
Petti S, Mohd M and Scully C: Revisiting
the association between alcohol drinking and oral cancer in
nonsmoking and betel quid non-chewing individuals. Cancer
Epidemiol. 36:e1–e6. 2012. View Article : Google Scholar : PubMed/NCBI
|