1
|
de Rooij JD, Zwaan CM and van den
Heuvel-Eibrink M: Pediatric AML: From biology to clinical
management. J Clin Med. 4:127–149. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tarlock K and Meshinchi S: Pediatric acute
myeloid leukemia: Biology and therapeutic implications of genomic
variants. Pediatr Clin North Am. 62:75–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Stensman LM, Kjeldsen E, Nersting J,
Schmiegelow K and Hasle H: Treatment-related myelodysplastic
syndrome in a child with acute myeloid leukemia and TPMT
heterozygosity. J Pediatr Hematol Oncol. 37:e242–e244. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Pui CH, Carroll WL, Meshinchi S and Arceci
RJ: Biology, risk stratification, and therapy of pediatric acute
leukemias: An update. J Clin Oncol. 29:551–565. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mussai FJ, Yap C, Mitchell C and Kearns P:
Challenges of clinical trial design for targeted agents against
pediatric leukemias. Front Oncol. 4:3742015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Creutzig U, Zimmermann M, Bourquin JP,
Dworzak MN, Fleischhack G, Graf N, Klingebiel T, Kremens B,
Lehrnbecher T, von Neuhoff C, et al: Randomized trial comparing
liposomal daunorubicin with idarubicin as induction for pediatric
acute myeloid leukemia: Results from study AML-BFM 2004. Blood.
122:37–43. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Munshi PN, Lubin M and Bertino JR:
6-thioguanine: A drug with unrealized potential for cancer therapy.
Oncologist. 19:760–765. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pizzo PA and Poplack DG: Principles and
practice of pediatric oncology. Philadelphia: Lippincott Williams
and Wilkins; pp. 3092011
|
9
|
Coulthard S and Hogarth L: The
thiopurines: An update. Invest New Drugs. 23:523–532. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Coulthard SA, Howell C, Robson J and Hall
AG: The relationship between thiopurine methyltransferase activity
and genotype in blasts from patients with acute leukemia. Blood.
92:2856–2862. 1998.PubMed/NCBI
|
11
|
Katara P and Kuntal H: TPMT polymorphism:
When shield becomes weakness. Interdiscip Sci. 8:150–155. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lennard L and Lilleyman JS:
Individualizing therapy with 6-mercaptopurine and 6-thioguanine
related to the thiopurine methyltransferase genetic polymorphism.
Ther Drug Monit. 18:328–334. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abaji R and Krajinovic M: Thiopurine
S-methyltransferase polymorphisms in acute lymphoblastic leukemia,
inflammatory bowel disease and autoimmune disorders: Influence on
treatment response. Pharmgenomics Pers Med. 10:143–156.
2017.PubMed/NCBI
|
14
|
Schmiegelow K, Forestier E, Kristinsson J,
Söderhäll S, Vettenranta K, Weinshilboum R and Wesenberg F: Nordic
Society of Paediatric Haematology and Oncology: Thiopurine
methyltransferase activity is related to the risk of relapse of
childhood acute lymphoblastic leukemia: Results from the NOPHO
ALL-92 study. Leukemia. 23:557–564. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lennard L, Cartwright CS, Wade R and Vora
A: Thiopurine methyltransferase and treatment outcome in the UK
acute lymphoblastic leukaemia trial ALL2003. Br J Haematol.
170:550–558. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tamm R, Mägi R, Tremmel R, Winter S,
Mihailov E, Smid A, Möricke A, Klein K, Schrappe M, Stanulla M, et
al: Polymorphic variation in TPMT is the principal determinant of
TPMT phenotype: A meta-analysis of three genome-wide association
studies. Clin Pharmacol Ther. 101:684–695. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Stary J, Zimmermann M, Campbell M,
Castillo L, Dibar E, Donska S, Gonzalez A, Izraeli S, Janic D,
Jazbec J, et al: Intensive chemotherapy for childhood acute
lymphoblastic leukemia: Results of the randomized intercontinental
trial ALL IC-BFM 2002. J Clin Oncol. 32:174–184. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chrzanowska M, Kuehn M,
Januszkiewicz-Lewandowska D, Kurzawski M and Droździk M: Thiopurine
S-methyltransferase phenotype-genotype correlation in children with
acute lymphoblastic leukemia. Acta Pol Pharm. 69:405–410.
2012.PubMed/NCBI
|
19
|
Kröplin T, Weyer N, Gutsche S and Iven H:
Thiopurine S-methyltransferase activity in human erytrocytes: A new
HPLC method using 6-thioguanine as substrate. Eur J Clin Pharmacol.
54:265–271. 1998. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kröplin T and Iven H: Methylation of
6-mercaptopurine and 6-thioguanine by thiopurine
S-methyltransferase. A comparison of activity in red blood cell
samples of 199 donors. Eur J Clin Pharmacol. 56:343–345. 2000.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kurzawski M, Gawrońska-Szklarz B and
Droździk M: Frequency distribution of thiopurine
S-methyltransferase alleles in a polish population. Ther Drug
Monit. 26:541–545. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kotur N, Dokmanovic L, Janic D, Stankovic
B, Krstovski N, Tosic N, Katsila T, Patrinos GP, Zukic B and
Pavlovic S: TPMT gene expression is increased during maintenance
therapy in childhood acute lymphoblastic leukemia patients in a
TPMT gene promoter variable number of tandem repeat-dependent
manner. Pharmacogenomics. 16:1701–1712. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chouchana L, Narjoz C, Roche D, Golmard
JL, Pineau B, Chatellier G, Beaune P and Loriot MA: Interindividual
variability in TPMT enzyme activity: 10 years of experience with
thiopurine pharmacogenetics and therapeutic drug monitoring.
Pharmacogenomics. 15:745–757. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Anasari A, Hassan C, Duley J, Marinaki A,
Shobowale-Bakre EM, Seed P, Meenan J, Yim A and Sanderson J:
Thiopurine methyltransferase activity and the use of azathioprine
in inflammatory bowel disease. Aliment Pharmacol Ther.
16:1743–1750. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chouchana L, Narjoz C, Beaune P, Loriot MA
and Roblin X: Review article: The benefits of pharmacogenetics for
improving thiopurine therapy in inflammatory bowel disease. Aliment
Pharmacol Ther. 35:15–36. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Karas-Kuzelicki N and Mlinaric-Rascan I:
Individualization of thiopurine therapy: Thiopurine
S-methyltransferase and beyond. Pharmacogenomics. 10:1309–1322.
2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Roberts RL, Gearry RB, Bland MV, Sies CW,
George PM, Burt M, Marinaki AM, Arenas M, Barclay ML and Kennedy
MA: Trinucleotide repeat variants in the promoter of the thiopurine
S-methyltransferase gene of patients exhibiting ultra-high enzyme
activity. Pharmacogenet Genomics. 18:434–438. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chouchana L, Roche D, Jian R, Beaune P and
Loriot MA: Poor response to thiopurine in inflammatory bowel
disease: How to overcome therapeutic resistance? Clin Chem.
59:1023–1026. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Stocco G, Yang W, Crews KR, Thierfelder
WE, Decorti G, Londero M, Franca R, Rabusin M, Valsecchi MG, Pei D,
et al: PACSIN2 polymorphism influences TPMT activity and
mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet.
21:4793–4804. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Smid A, Karas-Kuzelicki N, Jazbec J and
Mlinaric-Rascan I: PACSIN2 polymorphism is associated with
thiopurine-induced hematological toxicity in children with acute
lymphoblastic leukaemia undergoing maintenance therapy. Sci Rep.
6:302442016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Karas-Kuželički N, Šmid A, Tamm R,
Metspalu A and Mlinarič-Raščan I: From pharmacogenetics to
pharmacometabolomics: SAM modulates TPMT activity.
Pharmacogenomics. 15:1437–1449. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Milek M, Kuzelicki Karas N, Smid A and
Mlinaric-Rascan I: S-adenosylmethionine regulates thiopurine
methyltransferase activity and decreases 6-mercaptopurine
cytotoxicity in MOLT lymphoblasts. Biochem Pharmacol. 77:1845–1853.
2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lennard L, Cartwright CS, Wade R, Richards
SM and Vora A: Thiopurine methyltransferase genotype-phenotype
discordance and thiopurine active metabolite formation in childhood
acute lymphoblastic leukaemia. Br J Clin Pharmacol. 76:125–136.
2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chouchana L, Fernández-Ramos AA, Dumont F,
Marchetti C, Ceballos-Picot I, Beaune P, Gurwitz D and Loriot MA:
Molecular insight into thiopurine resistance: Transcriptomic
signature in lymphoblastoid cell lines. Genome Med. 7:372015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Gibson B, Perentesis J, Alonzo TA and
Kaspers GL: Treatment of Acute Myeloid LeukemiaChildhood Leukemia.
Springer-Verlag; Berlin Heidelberg: pp. 136–137. 2011
|
36
|
https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-000018-39/DE(entry
date 20 April 2018.).
|
37
|
Asadov C, Aliyeva G and Mustafayeva K:
Thiopurine S-methyltransferase as a pharmacogenetic biomarker:
Significance of testing and review of major methods. Cardiovasc
Hematol Agents Med Chem. 15:23–30. 2017. View Article : Google Scholar : PubMed/NCBI
|