1
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Khandekar MJ, Cohen P and Bruce M:
Molecular mechanisms of cancer development in obesity. Nat Rev
Cancer. 11:886–895. 2011. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Fearon ER: Molecular genetics of
colorectal cancer. Annu Rev Pathol. 6:479–507. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Saif MW and Chu E: Biology of colorectal
cancer. Cancer J. 16:196–201. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Issa JP: Colon cancer: It's CIN or CIMP.
Clin Cancer Res. 14:5939–5940. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jass JR: Classification of colorectal
cancer based on correlation of clinical, morphological and
molecular features. Histopathology. 50:113–130. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Alkema MJ, Bronk M, Verhoeven E, Otte A,
van't Veer LJ, Berns A and van Lohuizen M: Identification of
Bmi1-interacting proteins as constituents of a multimeric mammalian
polycomb complex. Gene Dev. 11:226–240. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kuzmichev A, Nishioka K,
Erdjument-Bronmage, Tempst P and Reinberg D: Histone
methyltransferase activity associated with a human multiprotein
complex containing the Enhancer of Zeste protein. Gene Dev.
16:2893–2905. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ketel CS, Andersen EF, Vargas ML, Suh J,
Strome S and Simon JA: Subunit contributions to histone
methyltransferase activities of fly and worm polycomb group
complexes. Mol Cell Biol. 25:6857–6868. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Schwartz YB, Kahn TG, Nix DA, Li XY,
Bourgon R, Biggin M and Pirrotta V: Genome-wide analysis of
Polycomb targets in Drosophila melanogaster. Nat Genet. 38:700–705.
2006. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Schuettengruber B, Ganapathi M, Leblanc B,
Portoso M, Jaschek R, Tolhuis B, van Lohuizen M, Tanay A and
Cavalli G: Functional anatomy of polycomb and trithorax chromatin
landscapes in Drosophila embryos. PLoS Biol. 7:e132009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Boyer LA, Piath K, Zeitlinger J, Brambrink
T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et
al: Polycomb complexes repress developmental regulators in murine
embryonic stem cells. Nature. 441:349–353. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao R and Zhang Y: The functions of
E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr
Opin Genet Dev. 14:155–164. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Simon JA and Lange CA: Roles of the EZH2
histone methyltransferase in cancer epigenetics. Mutat Res.
647:21–29. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kleer CG, Cao Q, Varambally S, Shen R, Ota
I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2
is a marker of aggressive breast cancer and promotes neoplastic
transformation of breast epithelial cells. Proc Natl Acad Sci USA.
100:11606–11611. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bachmann IM, Halvorsen OJ, Collett K,
Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP and
Akslen LA: EZH2 expression is associated with high proliferation
rate and aggressive tumor subgroups in cutaneous melanoma and
cancers of the endometrium, prostate, and breast. J Clin Oncol.
24:268–273. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Varambally S, Dhanasekaran SM, Ahou M,
Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt
RG, Otte AP, et al: The polycomb group protein EZH2 is involved in
progression of prostate cancer. Nature. 419:624–629. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Saramäki OR, Tammela TL, Martilkainen PM,
Vessella RL and Visakorpi T: The gene for polycomb group protein
enhancer of zeste homolog 2 (EZH2) is amplified in late-stage
prostate cancer. Gene Chromosome Canc. 45:639–645. 2006. View Article : Google Scholar
|
20
|
Li H, Cai Q, Godwin AK and Zhang R:
Enhancer of zeste homolog 2 promotes the proliferation and invasion
of epithelial ovarian cancer cells. Mol Cancer Res. 8:1610–1618.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nakagawa S, Okabe H, Sakamoto Y, Hayashi
H, Hashimoto D, Yokoyama N, Sakamoto K, Kuroki H, Mima K, Nitta H,
et al: Enhancer of zeste homolog 2 (EZH2) promotes progression of
cholangiocarcinoma cells by regulating cell cycle and apoptosis.
Ann Surg Oncol. 20 Suppl 3:S667–S675. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kuroki H, Hayashi H, Okabe H, Hashimoto D,
Takamori H, Nakahara O, Nakagawa S, Fukushima Y, Chikamoto A, Beppu
T, et al: EZH2 is associated with malignant behavior in pancreatic
IPMN via p27Kip1 downregulation. PLoS One. 9:e1009042014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fan T, Jiang S, Chung N, Alikhan A, Ni C,
Lee CC and Hornyak TJ: EZH2-dependent suppression of a cellular
senescence phenotype in melanoma cells by inhibition of p21/CDKN1A
expression. Mol Cancer Res. 9:418–29. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ougolkov AV, Billim V and Billadeau DD:
Regulation of pancreatic tumor cell proliferation and
chemoresistance by the histone methyltransferase enhancer of zeste
homologue 2. Clin Cancer Res. 14:6790–6796. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Abbas T and Dutta A: p21 in cancer,
intricate networks and multiple activities. Nat Rev Cancer.
9:400–414. 2009. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Vogelstein B, Fearon ER, Hamilton SR, Kern
SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM and Bos
JL: Genetic alterations during colorectal-tumor development. N Eng
J Med. 319:525–532. 1988. View Article : Google Scholar
|
28
|
Sasaki M, Okamoto M, Sato C, Sugio K,
Soejima J, Iwama T, Ikeuchi T, Tonomura A, Miyaki M and Sasazuki T:
Loss of constitutional heterozygosity in colorectal tumors from
patients with familial polyposis coli and those with nonpolyposis
colorectal carcinoma. Cancer Res. 49:4402–4406. 1989.PubMed/NCBI
|
29
|
Goelz SE, Vogelstein B, Jamilton SR and
Feinberg AP: Hypomethylation of DNA from benign and malignant human
colon neoplasms. Science. 228:187–190. 1985. View Article : Google Scholar : PubMed/NCBI
|
30
|
Abbas T and Dutta A: p21 in cancer:
Intricate networks and multiple activities. Nat Rev Cancer.
9:400–414. 2009. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Bukholm IK and Mesland JM: Protein
expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb
in human colon carcinomas. Virchows Arch. 436:224–228. 2000.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Pasz-Walczak G, Kordek R and Faflik M: P21
(WAF1) expression in colorectal cancer: Correlation sith P53 and
cyclin D1 expression, clinicopathological parameters and prognosis.
Pathol Res Pract. 197:683–689. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hubaux R, Thu KL, Coe BP, MacAulay C, Lam
S and Lam WL: EZH2 promotes E2F-driven SCLC tumorigenesis through
modulation of apoptosis and cell-cycle regulation. J Thorac Oncol.
8:1102–1106. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Batchu RB, Qazi AM, Gruzdyn OV, Semaan A,
Seward SM, Chamala S, Dhulipala VB, Bouwman DL, Weaver DW and
Gruber SA: EZH2-shRNA-mediated upregulation of p21waf1/cip1 and its
transcriptional enhancers with concomitant downmodulation of mutant
p53 in pancreatic ductal adenocaricinoma. Surgery. 154:739–747.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yoo KH and Hennighausen L: EZH2
methyltransferase and H3K27 methylation in breast cancer. Int J
Biol Sci. 8:59–65. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chi XZ, Yang JO, Lee KY, Ito K, Sakakura
C, Li QL, Kim HR, Cha EJ, Lee YH, Kaneda A, et al: RUNX3 suppresses
gastric epithelial cell growth by inducing p21(WAF1/Cip1)
expression in cooperation with transforming growth factor
{beta}-activated SMAD. Mol Cell Biol. 25:8097–8107. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Kodach LL, Jacobe RJ, Heijmans J, van
Noesel CJ, Langers AM, Verspaget HW, Hommes DW, Offerhaus GJ, van
den Brink GR and Hardwick JC: The role of EZH2 and DNA methylation
in the silencing of the tumour suppressor RUNX3 in colorectal
cancer. Carcinogenesis. 31:1567–1575. 2010. View Article : Google Scholar : PubMed/NCBI
|