1
|
Salehi F, Dunfield L, Phillips KP, Krewski
D and Vanderhyden BC: Risk factors for ovarian cancer: An overview
with emphas is on hormonal factors. J Toxicol Environ Health B Crit
Rev. 11:301–321. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Markman M: Pharmaceutical management of
ovarian cancer: Current status. Drugs. 68:771–789. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mckeage MJ: Comparative adverse effect
profiles of platinum drugs. Drug Saf. 13:228–244. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Aisner J, Jacobs M, Sinabaldi V, Gray W
and Eisenberger M: Chemoradiotherapy for the treatment of
regionally advanced head and neck cancers. Semin Oncol. 21 5 Suppl
12:S35–S44. 1994.
|
5
|
Ali BH and Al Moundhri MS: Agents
ameliorating or augmenting the nephrotoxicity of cisplatin and
other platinum compounds: A review of some recent research. Food
Chem Toxicol. 44:1173–1183. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Santos NA, Catao CS, Martins NM, Curti C,
Bianchi ML and Santos AC: Cisplatin-induced nephrotoxicity is
associated with oxidative stress, redox state unbalance, impairment
of energetic metabolism and apoptosis in rat kidney mitochondria.
Arch Toxicol. 81:495–504. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Kawanishi S, Hiraku Y, Pinlaor S and Ma N:
Oxidative and nitrative DNA damage in animals and patients with
inflammatory diseases in relation to inflammation-related
carcinogenesis. Biol Chem. 387:365–372. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Janssen-Heininger YM, Mossman BT, Heintz
NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG and
van der Vliet A: Redox-based regulation of signal transduction:
principles, pitfalls, and promises. Free Radic Biol Med. 45:1–17.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ames BN, Shigenaga MK and Hagen TM:
Oxidants, antioxidants, and the degenerative diseases of aging.
Proc Natl Acad Sci USA. 90:7915–7922. 1993. View Article : Google Scholar : PubMed/NCBI
|
11
|
Schafer ZT, Grassian AR, Song L, Jiang Z,
Gerhart-Hines Z, Irie HY, Gao S, Puigserver P and Brugge JS:
Antioxidant and oncogene rescue of metabolic defects caused by loss
of matrix attachment. Nature. 461:109–113. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Perry G, Raina AK, Nunomura A, Wataya T,
Sayre LM and Smith MA: How important is oxidative damage? Lessons
from Alzheimer's disease. Free Radic Biol Med. 28:831–834. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Brasch RC, London DA, Wesbey GE, Tozer TN,
Nitecki DE, Williams RD, Doemeny J, Tuck LD and Lallemand DP: Work
in progress: Nuclear magnetic resonance study of a paramagnetic
nitroxide contrast agent for enhancement of renal structures in
experimental animals. Radiology. 147:773–779. 1983. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tabaczar S, Talar M and Gwoździński K:
Nitroxides as antioxidants-possibilities of their application in
chemoprevention and radioprotection. Postepy Hig Med Dosw (Online).
65:46–54. 2011.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
16
|
Saito K, Takeshita K, Ueda J and Ozawa T:
Two reaction sites of a spin label, TEMPOL
(4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), with hydroxyl
radical. J Pharm Sci. 92:275–280. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Krishna MC, Grahame DA, Samuni A, Mitchell
JB and Russo A: Oxoammonium cation intermediate in the
nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci
USA. 89:5537–5541. 1992. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wilcox CS and Pearlman A: Chemistry and
antihypertensive effects of tempol and other nitroxides. Pharmacol
Rev. 60:418–469. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Volk T, Hensel M, Schuster H and Kox WJ:
Secretion of MCP-1 and IL-6 by cytokine stimulated production of
reactive oxygen species in endothelial cells. Mol Cell Biochem.
206:105–112. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cuzzocrea S, McDonald MC, Mota-Filipe H,
Mazzon E, Costantino G, Britti D, Mazzullo G, Caputi AP and
Thiemermann C: Beneficial effects of tempol, a membrane-permeable
radical scavenger, in a rodent model of collagen-induced arthritis.
Arthritis Rheum. 43:320–328. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Di Paola R, Mazzon E, Zito D, Maiere D,
Britti D, Genovese T and Cuzzocrea S: Effects of Tempol, a
membrane-permeable radical scavenger, in a rodent model
periodontitis. J Clin Periodontol. 32:1062–1068. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Moosmann B and Behl C: Antioxidants as
treatment for neurodegenerative disorders. Expert Opin Investig
Drugs. 11:1407–1435. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Grasbon-Frodl EM, Kösel S, Riess O, Müller
U, Mehraein P and Graeber MB: Analysis of mitochondrial targeting
sequence and coding region polymorphisms of the manganese
superoxide dismutase gene in German Parkinson disease patients.
Biochem Biophys Res Commun. 255:749–752. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Schnackenberg CG and Wilcox CS: Two-week
administration of tempol attenuates both hypertension and renal
excretion of 8-Iso prostaglandin f2alpha. Hypertension. 33:424–428.
1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Monti E, Supino R, Colleoni M, Costa B,
Ravizza R and Gariboldi MB: Nitroxide TEMPOL impairs mitochondrial
function and induces apoptosis in HL60 cells. J Cell Biochem.
82:271–276. 2001. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Offer T, Russo A and Samuni A: The
pro-oxidative activity of SOD and nitroxide SOD mimics. FASEB J.
14:1215–1223. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gariboldi MB, Rimoldi V, Supino R, Favini
E and Monti E: The nitroxide tempol induced oxidative stress,
p21WAF/CIP1, and cell death in HL60 cells. Free Radic Biol Med.
29:633–641. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Agarwal R and Kaye SB: Ovarian cancer:
Strategies for overcoming resistance to chemotherapy. Nat Rev
Cancer. 3:502–516. 2003. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Gariboldi MB, Lucchi S, Caserini C, Supino
R, Oliva C and Monti E: Antiproliferative effect of the piperidine
nitroxide TEMPOL on neoplastic and nonneoplastic mammalian cell
lines. Free Radic Biol Med. 24:913–923. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Perrone GG, Tan SX and Dawes IW: Reactive
oxygen species and yeast apoptosis. Biochim Biophys Acta.
1783:1354–1368. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Circu ML and Aw TY: Reactive oxygen
species, cellular redox systems, and apoptosis. Free Radic Biol
Med. 48:749–762. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Todorova VK, Harms SA, Kaufmann Y, Luo S,
Luo KQ, Babb K and Klimberg VS: Effect of dietary glutamine on
tumor glutathione levels and apoptosis-related proteins in
DMBA-induced breast cancer of rats. Breast Cancer Res Treat.
88:247–256. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Alpert E, Gruzman A, Totary H, Kaiser N,
Reich R and Sasson S: A natural protective mechanism against
hyperglycemia in vascular endothelial and smooth-muscle cells: Role
of glucose and 12-hydroxyeicosatetraenoic acid. Biochem J.
362:413–422. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Behrooz A and Ismail-Beigi F: Stimulation
of glucose transport by hypoxia: Signals and mechanisms. News
Physiol Sci. 14:105–110. 1999.PubMed/NCBI
|