1
|
Hild WA, Breunig M and Goepferich A:
Quantum dots-nano-sized probes for the exploration of cellular and
intracellular targeting. Eur J Pharm Biopharm. 68:153–168. 2008.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Michalet X, Pinaud FF, Bentolila LA, Tsay
JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS and Weiss S:
Quantum dots for live cells, in vivo, imaging, and diagnostics.
Science. 307:538–544. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Joo KI, Fang Y, Liu Y, Xiao L, Gu Z, Tai
A, Lee CL, Tang Y and Wang P: Enhanced real-time monitoring of
adeno-associated virus trafficking by virus-quantum dot conjugates.
ACS Nano. 5:3523–3535. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Abbasi E, Kafshdooz T, Bakhtiary M,
Nikzamir N, Nikzamir N, Nikzamir M, Mohammadian M and Akbarzadeh A:
Biomedical and biological applications of quantum dots. Artif Cells
Nanomed Biotechnol. 44:885–891. 2016.PubMed/NCBI
|
5
|
Kamila S, McEwan C, Costley D, Atchison J,
Sheng Y, Hamilton GR, Fowley C and Callan JF: Diagnostic and
therapeutic applications of quantum dots in nanomedicine. Top Curr
Chem. 370:203–224. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Delehanty JB, Mattoussi H and Medintz IL:
Delivering quantum dots into cells: Strategies, progress and
remaining issues. Anal Bioanal Chem. 393:1091–1105. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Farlow J, Seo D, Broaders KE, Taylor MJ,
Gartner ZJ and Jun YW: Formation of targeted monovalent quantum
dots by steric exclusion. Nat Methods. 10:1203–1205. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bajwa N, Mehra NK, Jain K and Jain NK:
Pharmaceutical and biomedical applications of quantum dots. Artif
Cells Nanomed Biotechnol. 44:758–768. 2016.PubMed/NCBI
|
9
|
Cesar CL: Quantum dots as biophotonics
tools. Methods Mol Biol. 1199:3–9. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jayagopal A, Su YR, Blakemore JL, Linton
MF, Fazio S and Haselton FR: Quantum dot mediated imaging of
atherosclerosis. Nanotechnology. 20:1651022009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rabolli V, Lison D and Huaux F: The
complex cascade of cellular events governing inflammasome
activation and IL-1β processing in response to inhaled particles.
Part Fibre Toxicol. 13:402016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Egners A, Erdem M and Cramer T: The
response of macrophages and neutrophils to hypoxia in the context
of cancer and other inflammatory diseases. Mediators Inflamm.
2016:20536462016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kaur S, Raggatt LJ, Batoon L, Hume DA,
Levesque JP and Pettit AR: Role of bone marrow macrophages in
controlling homeostasis and repair in bone and bone marrow niches.
Semin Cell Dev Biol. 61:12–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Patel U, Rajasingh S, Samanta S, Cao T,
Dawn B and Rajasingh J: Macrophage polarization in response to
epigenetic modifiers during infection and inflammation. Drug Discov
Today. 22:186–193. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu Q, Li H, Xia Q, Liu Y and Xiao K: Role
of surface charge in determining the biological effects of CdSe/ZnS
quantum dots. Int J Nanomedicine. 10:7073–7088. 2015.PubMed/NCBI
|
16
|
Xiao Y, Zijl S, Wang L, de Groot DC, van
Tol MJ, Lankester AC and Borst J: Identification of the common
origins of osteoclasts, macrophages, and dendritic cells in human
hematopoiesis. Stem Cell Reports. 4:984–994. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Mohamed MM, El-Ghonaimy EA, Nouh MA,
Schneider RJ, Sloane BF and El-Shinawi M: Cytokines secreted by
macrophages isolated from tumor microenvironment of inflammatory
breast cancer patients possess chemotactic properties. Int J
Biochem Cell Biol. 46:138–147. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Donjerković D and Scott DW:
Activation-induced cell death in B lymphocytes. Cell Res.
10:179–192. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Galluzzi L, Kepp O, Trojel-Hansen C and
Kroemer G: Non-apoptotic functions of apoptosis-regulatory
proteins. EMBO Rep. 13:322–330. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wu T and Tang M: Toxicity of quantum dots
on respiratory system. Inhal Toxicol. 26:128–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J,
Dai J, Fan S and Zhang Z: The in vitro and in vivo toxicity of
graphene quantum dots. Biomaterials. 35:5041–5048. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hauck TS, Anderson RE, Fischer HC,
Newbigging S and Chan WC: In vivo quantum-dot toxicity assessment.
Small. 6:138–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kirchner C, Liedl T, Kudera S, Pellegrino
T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N and Parak WJ:
Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano
Lett. 5:331–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hardman R: A toxicologic review of quantum
dots: Toxicity depends on physicochemical and environmental
factors. Environ Health Perspect. 114:165–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Qu G, Wang X, Wang Z, Liu S and Jiang G:
Cytotoxicity of quantum dots and graphene oxide to erythroid cells
and macrophages. Nanoscale Res Lett. 8:1982013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin CH, Chang LW, Wei YH, Wu SB, Yang CS,
Chang WH, Chen YC and Lin PP: Electronic microscopy evidence for
mitochondria as targets for Cd/Se/Te-based quantum dot 705 toxicity
in vivo. Kaohsiung J Med Sci. 28:S53–S62. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Smith WE, Brownell J, White CC,
Afsharinejad Z, Tsai J, Hu X, Polyak SJ, Gao X, Kavanagh TJ and
Eaton DL: In vitro toxicity assessment of amphiphillic
polymer-coated CdSe/ZnS quantum dots in two human liver cell
models. ACS Nano. 6:9475–9484. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang W, Yang L, Kuang H, Yang P, Aguilar
ZP, Wang A, Fu F and Xu H: Acute toxicity of quantum dots on late
pregnancy mice: Effects of nanoscale size and surface coating. J
Hazard Mater. 318:61–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bakalova R, Zhelev Z, Kokuryo D, Spasov L,
Aoki I and Saga T: Chemical nature and structure of organic coating
of quantum dots is crucial for their application in imaging
diagnostics. Int J Nanomedicine. 6:1719–1732. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guleria A, Rath MC, Singh AK and Adhikari
S: Rapid and one-pot synthesis of self-assembled CdSe quantum dots
functionalized with β-Cyclodextrin: Reduced cytotoxicity and band
gap engineering. J Nanosci Nanotechnol. 15:9341–9357. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chakravarthy KV, Davidson BA, Helinski JD,
Ding H, Law WC, Yong KT, Prasad PN and Knight PR:
Doxorubicin-conjugated quantum dots to target alveolar macrophages
and inflammation. Nanomedicine. 7:88–96. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yeo JC, Wall AA, Luo L, Condon ND and Stow
JL: Distinct roles for APPL1 and APPL2 in regulating toll-like
receptor 4 signaling in macrophages. Traffic. 17:1014–1026. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Barr TA, Krembuszewski M, Gupta M, Gray D
and Mareque-Rivas JC: Quantum dots decorated with pathogen
associated molecular patterns as fluorescent synthetic pathogen
models. Mol Biosyst. 6:1572–1575. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pati R, Sahu R, Panda J and Sonawane A:
Encapsulation of zinc-rifampicin complex into
transferrin-conjugated silver quantum-dots improves its
antimycobacterial activity and stability and facilitates drug
delivery into macrophages. Sci Rep. 6:241842016. View Article : Google Scholar : PubMed/NCBI
|