1
|
Jego G, Bataille R and Pellat-Deceunynck
C: Interleukin-6 is a growth factor for nonmalignant human
plasmablasts. Blood. 97:1817–1822. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Harada H, Kawano MM, Huang N, Harada Y,
Iwato K, Tanabe O, Tanaka H, Sakai A, Asaoku H and Kuramoto A:
Phenotypic difference of normal plasma cells from mature myeloma
cells. Blood. 81:2658–2663. 1993.PubMed/NCBI
|
3
|
Paiva B, Almeida J, Pérez-Andrés M, Mateo
G, López A, Rasillo A, Vídriales MB, López-Berges MC, Miguel JF and
Orfao A: Utility of flow cytometry immunophenotyping in multiple
myeloma and other clonal plasma cell-related disorders. Cytometry B
Clin Cytom. 78:239–252. 2010.PubMed/NCBI
|
4
|
Jaffe ES, Campo E, Harris NL, Pileri SA,
Stein H and Swerdlow SH: Introduction and overview of the
classification of lymphoid neoplasmsWHO Classification of Tumours
of Haematopoietic and Lymphoid Tissues. Revised 4th edition.
Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H,
Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, Siebert R.
International Agency for Research on Cancer (IARC); Lyon: pp.
190–198. 2017
|
5
|
McKenna RW, Kyle RA, Kuehl WM, Harris NL,
Coupland RW and Fend F: Plasma cell neoplasmsWHO Classification of
Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th
edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA,
Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A,
Siebert R. International Agency for Research on Cancer (IARC);
Lyon: pp. 241–258. 2017
|
6
|
Raja KR, Kovarova L and Hajek R: Review of
phenotypic markers used in flow cytometric analysis of MGUS and MM,
and applicability of flow cytometry in other plasma cell disorders.
Br J Haematol. 149:334–351. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rawstron AC, Orfao A, Beksac M, Bezdickova
L, Brooimans RA, Bumbea H, Dalva K, Fuhler G, Gratama J, Hose D, et
al: Report of the European Myeloma Network on multiparametric flow
cytometry in multiple myeloma and related disorders. Haematologica.
93:431–438. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bataille R, Jégo G, Robillard N,
Barillé-Nion S, Harousseau JL, Moreau P, Amiot M and
Pellat-Deceunynck C: The phenotype of normal, reactive and
malignant plasma cells. Identification of ‘many and multiple
myelomas’ and of new targets for myeloma therapy. Haematologica.
91:1234–1240. 2006.PubMed/NCBI
|
9
|
Li H: TRP channel classification. Adv Exp
Med Biol. 976:1–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yin Y, Wu M, Zubcevic L, Borschel WF,
Lander GC and Lee SY: Structure of the cold- and menthol-sensing
ion channel TRPM8. Science. 359:237–241. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Seebacher F and Little AG: Plasticity of
performance curves can buffer reaction rates from body temperature
variation in active endotherms. Front Physiol. 8:5752017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsavaler L, Shapero MH, Morkowski S and
Laus R: Trp-p8, a novel prostate-specific gene, is up-regulated in
prostate cancer and other malignancies and shares high homology
with transient receptor potential calcium channel proteins. Cancer
Res. 61:3760–3769. 2001.PubMed/NCBI
|
13
|
Grolez GP and Gkika D: TRPM8 puts the
chill on prostate cancer. Pharmaceuticals (Basel). 9:pii: E44.
2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Asuthkar S, Demirkhanyan L, Mueting SR,
Cohen A and Zakharian E: High-throughput proteome analysis reveals
targeted TRPM8 degradation in prostate cancer. Oncotarget.
8:12877–12890. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Carrasquel-Ursulaez W, Moldenhauer H,
Castillo JP, Latorre R and Alvarez O: Biophysical analysis of
thermosensitive TRP channels with a special focus on the cold
receptor TRPM8. Temperature (Austin). 2:188–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Koh WU, Choi SS, Kim JH, Yoon HJ, Ahn HS,
Lee SK, Leem JG, Song JG and Shin JW: The preventive effect of
resiniferatoxin on the development of cold hypersensitivity induced
by spinal nerve ligation: Involvement of TRPM8. BMC Neurosci.
17:382016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Borowiec AS, Sion B, Chalmel F, Rolland D
A, Lemonnier L, De Clerck T, Bokhobza A, Derouiche S, Dewailly E,
Slomianny C, et al: Cold/menthol TRPM8 receptors initiate the
cold-shock response and protect germ cells from cold-shock-induced
oxidation. FASEB J. 30:3155–3170. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
de Vega Pérez MJ, Gómez-Monterrey I,
Ferrer-Montiel A and González-Muñiz R: Transient receptor potential
melastatin 8 channel (TRPM8) modulation: Cool entryway for treating
pain and cancer. J Med Chem. 59:10006–10029. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pan Y, Thapa D, Baldissera L Jr, Argunhan
F, Aubdool AA and Brain SD: Relevance of TRPA1 and TRPM8 channels
as vascular sensors of cold in the cutaneous microvasculature.
Pflugers Arch. 470:779–786. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fujita T, Liu Y, Higashitsuji H, Itoh K,
Shibasaki K, Fujita J and Nishiyama H: Involvement of TRPV3 and
TRPM8 ion channel proteins in induction of mammalian cold-inducible
proteins. Biochem Biophys Res Commun. 495:935–940. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yee NS: Roles of TRPM8 ion channels in
cancer: Proliferation, survival, and invasion. Cancers (Basel).
7:2134–2146. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yee NS: TRPM8 ion channels as potential
cancer biomarker and target in pancreatic cancer. Adv Protein Chem
Struct Biol. 104:127–155. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu Z, Wu H, Wei Z, Wang X, Shen P, Wang
S, Wang A, Chen W and Lu Y: TRPM8: A potential target for cancer
treatment. J Cancer Res Clin Oncol. 142:1871–1881. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ceylan GG, Önalan EE, Kuloğlu T, Aydoğ G,
Keleş İ, Tonyali Ş and Ceylan C: Potential role of
melastatin-related transient receptor potential cation channel
subfamily M gene expression in the pathogenesis of urinary bladder
cancer. Oncol Lett. 12:5235–5239. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ulăreanu R, Chiriţoiu G, Cojocaru F, Deftu
A, Ristoiu V, Stănică L, Mihăilescu DF and Cucu D: N-glycosylation
of the transient receptor potential melastatin 8 channel is altered
in pancreatic cancer cells. Tumour Biol. 39:10104283177209402017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Burke RC, Bardet SM, Carr L, Romanenko S,
Arnaud-Cormos D, Leveque P and O'Connor RP: Nanosecond pulsed
electric fields depolarize transmembrane potential via
voltage-gated K+, Ca2+ and TRPM8 channels in
U87 glioblastoma cells. Biochim Biophys Acta. 1859:2040–2050. 2017.
View Article : Google Scholar
|
27
|
Inada H, Iida T and Tominaga M: Different
expression patterns of TRP genes in murine B and T lymphocytes.
Biochem Biophys Res Commun. 350:762–767. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Schwarz EC, Wolfs MJ, Tonner S, Wenning
AS, Quintana A, Griesemer D and Hoth M: TRP channels in
lymphocytes. Handb Exp Pharmacol. 179:445–456. 2007. View Article : Google Scholar
|
29
|
Zierler S, Hampe S and Nadolni W: TRPM
channels as potential therapeutic targets against pro-inflammatory
diseases. Cell Calcium. 67:105–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gascoyne RD, Chan JKC, Campo E, Rosenwald
A, Jaffe ES, Stein H, Chan WC and Swerdlow SH: Diffuse large B-cell
lymphoma, NOSWHO Classification of Tumours of Haematopoietic and
Lymphoid Tissues. Revised 4th edition. Swerdlow SH, Campo E, Harris
NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian
RP, Le Beau MM, Orazi A, Siebert R. International Agency for
Research on Cancer (IARC); Lyon: pp. 291–297. 2017
|
31
|
El Karim IA, Linden GJ, Curtis TM, About
I, McGahon MK, Irwin CR and Lundy FT: Human odontoblasts express
functional thermo-sensitive TRP channels: Implications for dentin
sensitivity. Pain. 152:2211–2223. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Meng H, Li H, Ohe R, Naing YA, Yang S,
Kabasawa T, Kato T, Osakabe M, Ohtake H, Ishida A, et al: Thymic
stromal lymphopoietin in tonsillar follicular dendritic cells
correlates with elevated serum immunoglobulin A titer by promoting
tonsillar immunoglobulin A class switching in immunoglobulin A
nephropathy. Transl Res. 176:1–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Masuda A, Nishikawa T, Yamamoto T and
Kobayashi M: Simple method for photoshop-aided double
immunohistochemistry-usage of ‘image stack’ function.
Histopathology. 53:609–610. 2008.PubMed/NCBI
|
34
|
Wada K, Maeda K, Tajima K, Kato T, Kobata
T and Yamakawa M: Expression of BAFF-R and TACI in reactive
lymphoid tissues and B-cell lymphomas. Histopathology. 54:221–232.
2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yamamoto A, Takahashi K, Saito S, Tominaga
M and Ohta T: Two different avian cold-sensitive sensory neurons:
Transient receptor potential melastatin 8 (TRPM8)-dependent and
-independent activation mechanisms. Neuropharmacology. 111:130–141.
2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Weyer AD and Lehto SG: Development of
TRPM8 antagonists to treat chronic pain and migraine.
Pharmaceuticals (Basel). 10:pii: E37. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Falini B, Fizzotti M, Pucciarini A,
Bigerna B, Marafioti T, Gambacorta M, Pacini R, Alunni C,
Natali-Tanci L, Ugolini B, et al: A monoclonal antibody (MUM-1p)
detects expression of the MUM-1/IRF4 protein in a subset of
germinal center B cells, plasma cells, and activated T cells.
Blood. 95:2084–2092. 2000.PubMed/NCBI
|
38
|
Zhang X, Park CS, Yoon SO, Li L, Hsu YM,
Ambrose C and Choi YS: BAFF supports human B cell differentiation
in the lymphoid follicles through distinct receptors. Int Immunol.
17:779–788. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Simon S and Labarriere N: PD-1 expression
on tumor-specific T cells: Friend or foe for immunotherapy?
Oncoimmunology. 14:e13648282017.
|
40
|
Kang JE, Hwang SH, Lee JH, Park DY and Kim
HH: Effects of RBC removal and TRIzol of peripheral blood samples
on RNA stability. Clin Chim Acta. 412:1883–1885. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Almeida SM, Raboni SM, Nogueira MB and
Vidal LR: Red blood cells in cerebrospinal fluid as possible
inhibitory factor for enterovirus RT-PCR. Arq Neuropsiquiatr.
74:810–815. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Siebolts U, Varnholt H, Drebber U, Dienes
HP, Wickenhauser C and Odenthal M: Tissues from routine pathology
archives are suitable for microRNA analyses by quantitative PCR. J
Clin Pathol. 62:84–88. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang L and Barritt GJ: TRPM8 in prostate
cancer cells: A potential diagnostic and prognostic marker with a
secretory function? Endocr Relat Cancer. 13:27–38. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chuang HH, Neuhausser WM and Julius D: The
super-cooling agent icilin reveals a mechanism of coincidence
detection by a temperature-sensitive TRP channel. Neuron.
43:859–869. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tartakoff AM and Vassalli P: Plasma cell
immunoglobulin secretion: Arrest is accompanied by alterations of
the golgi complex. J Exp Med. 146:1332–1345. 1977. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kiessling A, Stevanovic S, Füssel S,
Weigle B, Rieger MA, Temme A, Rieber EP and Schmitz M:
Identification of an HLA-A*0201-restricted T-cell epitope derived
from the prostate cancer-associated protein prostein. Br J Cancer.
90:1034–1040. 2004. View Article : Google Scholar : PubMed/NCBI
|