1
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dik S, Scheepers PT and Godderis L:
Effects of environmental stressors on histone modifications and
their relevance to carcinogenesis: A systematic review. Crit Rev
Toxicol. 42:491–500. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Edwards TM and Myers JP: Environmental
exposures and gene regulation in disease etiology. Environ Health
Perspect. 115:1264–1270. 2007. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Hursting SD and Berger NA: Energy balance,
host-related factors, and cancer progression. J Clin Oncol.
28:4058–4065. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hursting SD and Hursting MJ: Growth
signals, inflammation, and vascular perturbations: Mechanistic
links between obesity, metabolic syndrome, and cancer. Arterioscler
Thromb Vasc Biol. 32:1766–1770. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Maynard S, Schurman SH, Harboe C, de
Souza-Pinto NC and Bohr VA: Base excision repair of oxidative DNA
damage and association with cancer and aging. Carcinogenesis.
30:2–10. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Weidman JR, Dolinoy DC, Murphy SK and
Jirtle RL: Cancer susceptibility: Epigenetic manifestation of
environmental exposures. Cancer J. 13:9–16. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Adcock IM, Caramori G and Barnes PJ:
Chronic obstructive pulmonary disease and lung cancer: New
molecular insights. Respiration. 81:265–284. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Decramer M, Janssens W and Miravitlles M:
Chronic obstructive pulmonary disease. Lancet. 379:1341–1351. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Decramer M, Rennard S, Troosters T, Mapel
DW, Giardino N, Mannino D, Wouters E, Sethi S and Cooper CB: COPD
as a lung disease with systemic consequences-clinical impact,
mechanisms, and potential for early intervention. COPD. 5:235–256.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang IA, Relan V, Wright CM, Davidson MR,
Sriram KB, Francis Savarimuthu SM, Clarke BE, Duhig EE, Bowman RV
and Fong KM: Common pathogenic mechanisms and pathways in the
development of COPD and lung cancer. Expert Opin Ther Targets.
15:439–456. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Young RP and Hopkins RJ: How the genetics
of lung cancer may overlap with COPD. Respirology. 16:1047–1055.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bozinovski S, Vlahos R, Anthony D,
McQualter J, Anderson G, Irving L and Steinfort D: COPD and
squamous cell lung cancer: Aberrant inflammation and immunity is
the common link. Br J Pharmacol. 173:635–648. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Durham AL and Adcock IM: The relationship
between COPD and lung cancer. Lung Cancer. 90:121–127. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Aoshiba K, Zhou F, Tsuji T and Nagai A:
DNA damage as a molecular link in the pathogenesis of COPD in
smokers. Eur Respir J. 39:1368–1376. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Brzóska K, Bartlomiejczyk T, Sochanowicz
B, Cymerman M, Grudny J, Kołakowski J, Kapka-Skrzypczak L,
Kruszewski M, Sliwiński P and Roszkowski-Śliż K: Matrix
metalloproteinase 3 polymorphisms as a potential marker of enhanced
susceptibility to lung cancer in chronic obstructive pulmonary
disease subjects. Ann Agric Environ Med. 21:546–551. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Grudny J, Kolakowski J, Kruszewski M,
Szopiński J, Sliwiński P, Wiatr E, Winek J, Załęska J, Zych J and
Roszkowski-Śliż K: Association of genetic dependences between lung
cancer and chronic obstructive pulmonary disease. Pneumonol Alergol
Pol. 81:308–318. 2013.PubMed/NCBI
|
18
|
Goldenstein H, Levy NS and Levy AP:
Haptoglobin genotype and its role in determining heme-iron mediated
vascular disease. Pharmacol Res. 66:1–6. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kruszewski M: Labile iron pool: The main
determinant of cellular response to oxidative stress. Mutat Res.
531:81–92. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Erel O: Automated measurement of serum
ferroxidase activity. Clin Chem. 44:2313–2319. 1998.PubMed/NCBI
|
21
|
Boukhenouna S, Wilson MA, Bahmed K and
Kosmider B: Reactive oxygen species in chronic obstructive
pulmonary disease. Oxid Med Cell Longev. 2018:57303952018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Markkanen E: Not breathing is not an
option: How to deal with oxidative DNA damage. DNA Repair (Amst).
59:82–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lewandowska H, Kalinowska M, Lewandowski
W, Stepkowski TM and Brzóska K: The role of natural polyphenols in
cell signaling and cytoprotection against cancer development. J
Nutr Biochem. 32:1–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liguori I, Russo G, Curcio F, Bulli G,
Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce
D and Abete P: Oxidative stress, aging, and diseases. Clin Interv
Aging. 13:757–772. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hung RJ, Hall J, Brennan P and Boffetta P:
Genetic polymorphisms in the base excision repair pathway and
cancer risk: A HuGE review. Am J Epidemiol. 162:925–942. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
López-Cima MF, Gonzalez-Arriaga P,
Garcia-Castro L, Pascual T, Marrón MG, Puente XS and Tardón A:
Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and
lung cancer risk in a population of northern Spain. BMC Cancer.
7:1622007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Manuguerra M, Saletta F, Karagas MR,
Berwick M, Veglia F, Vineis P and Matullo G: XRCC3 and XPD/ERCC2
single nucleotide polymorphisms and the risk of cancer: A HuGE
review. Am J Epidemiol. 164:297–302. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Park JY, Lee SY, Jeon HS, Bae NC, Chae SC,
Joo S, Kim CH, Park JH, Kam S, Kim IS and Jung TH: Polymorphism of
the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer
Epidemiol Biomarkers Prev. 11:23–27. 2002.PubMed/NCBI
|
29
|
Zhou W, Liu G, Miller DP, Thurston SW, Xu
LL, Wain JC, Lynch TJ, Su L and Christiani DC: Polymorphisms in the
DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk.
Cancer Epidemiol Biomarkers Prev. 12:359–365. 2003.PubMed/NCBI
|
30
|
Hung RJ, Christiani DC, Risch A, Popanda
O, Haugen A, Zienolddiny S, Benhamou S, Bouchardy C, Lan Q, Spitz
MR, et al: International lung cancer consortium: Pooled analysis of
sequence variants in DNA repair and cell cycle pathways. Cancer
Epidemiol Biomarkers Prev. 17:3081–3089. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dempsey E and Rudd PM: Acute phase
glycoproteins: Bystanders or participants in carcinogenesis? Ann N
Y Acad Sci. 1253:122–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Delanghe JR and Langlois MR: Haptoglobin
polymorphism and body iron stores. Clin Chem Lab Med. 40:212–216.
2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dobryszycka W: Biological functions of
haptoglobin-new pieces to an old puzzle. Eur J Clin Chem Clin
Biochem. 35:647–654. 1997.PubMed/NCBI
|
34
|
Nielsen MJ and Moestrup SK: Receptor
targeting of hemoglobin mediated by the haptoglobins: Roles beyond
heme scavenging. Blood. 114:764–771. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Levy AP, Asleh R, Blum S, Levy NS,
Miller-Lotan R, Kalet-Litman S, Anbinder Y, Lache O, Nakhoul FM,
Asaf R, et al: Haptoglobin: Basic and clinical aspects. Antioxid
Redox Signal. 12:293–304. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sadrzadeh SM and Bozorgmehr J: Haptoglobin
phenotypes in health and disorders. Am J Clin Pathol. 121
Suppl:S97–S104. 2004.PubMed/NCBI
|
37
|
Wassell J: Haptoglobin: Function and
polymorphism. Clin Lab. 46:547–552. 2000.PubMed/NCBI
|
38
|
Huang X: Iron overload and its association
with cancer risk in humans: Evidence for iron as a carcinogenic
metal. Mutat Res. 533:153–171. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Knekt P, Reunanen A, Takkunen H, Aromaa A,
Heliövaara M and Hakulinen T: Body iron stores and risk of cancer.
Int J Cancer. 56:379–382. 1994. View Article : Google Scholar : PubMed/NCBI
|
40
|
Selby JV and Friedman GD: Epidemiologic
evidence of an association between body iron stores and risk of
cancer. Int J Cancer. 41:677–682. 1988. View Article : Google Scholar : PubMed/NCBI
|
41
|
Toyokuni S and Sagripanti JL: Association
between 8-hydroxy-2′-deoxyguanosine formation and DNA strand breaks
mediated by copper and iron. Free Radic Biol Med. 20:859–864. 1996.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhou W, Park S, Liu G, Miller DP, Wang LI,
Pothier L, Wain JC, Lynch TJ, Giovannucci E and Christiani DC:
Dietary iron, zinc, and calcium and the risk of lung cancer.
Epidemiology. 16:772–779. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Richardson DR, Kalinowski DS, Lau S,
Jansson PJ and Lovejoy DB: Cancer cell iron metabolism and the
development of potent iron chelators as anti-tumour agents. Biochim
Biophys Acta. 1790:702–717. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang SJ, Gao C and Chen BA: Advancement of
the study on iron metabolism and regulation in tumor cells. Chin J
Cancer. 29:451–455. 2010. View Article : Google Scholar : PubMed/NCBI
|