1
|
Chen W, Zheng R, Zhang S, Zeng H, Zou X
and He J: Report of Cancer Incidence and Mortality in China, 2013.
China Cancer. 25:1–8. 2017.(In Chinese). View Article : Google Scholar
|
2
|
Min YC: The development in the study of
platinum-based antineoplastic drugs. Chin J Mod Drug Appl.
9:2822015.
|
3
|
Brabec V and Kasparkova J: Molecular
aspects of resistance to antitumor platinum drugs. Drug Resist
Updat. 5:147–161. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Arany I and Safirstein RL: Cisplatin
nephrotoxicity. Semin Nephrol. 23:460–464. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ali BH and Al Moundhri MS: Agents
ameliorating or augmenting the nephrotoxicity of cisplatin and
other platinum compounds: A review of some recent research. Food
Chem Toxicol. 44:1173–1183. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Christova TY, Gorneva GA, Taxirov SI,
Duridanova DB and Setchenska MS: Effect of cisplatin and cobalt
chloride on antioxidant enzymes in the livers of Lewis lung
carcinoma-bearing mice: Protective role of heme oxygenase. Toxicol
Lett. 138:235–242. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Spracklen TF, Vorster AA, Ramma L, Dalvie
S and Ramesar RS: Promoter region variation in NFE2L2 influences
susceptibility to ototoxicity in patients exposed to high
cumulative doses of cisplatin. Pharmacogenomics J. 17:515–520.
2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Maddika S, Mendoza FJ, Hauff K, Zamzow CR,
Paranjothy T and Los M: Cancer-selective therapy of the future:
Apoptin and its mechanism of action. Cancer Biol Ther. 5:10–19.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Leliveld SR, Dame RT, Mommaas MA, Koerten
HK, Wyman C, Danen-van Oorschot AA, Rohn JL, Noteborn MH and
Abrahams JP: Apoptin protein multimers form distinct higher-order
nucleoprotein complexes with DNA. Nucleic Acids Res. 31:4805–4813.
2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhong X, Zhao H, Liang S, Zhou D, Zhang W
and Yuan L: Gene delivery of apoptin-derived peptide using an
adeno-associated virus vector inhibits glioma and prolongs animal
survival. Biochem Biophys Res Commun. 482:506–513. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang J, Hou L, Wu X, Zhao D, Wang Z, Hu
H, Fu Y and He J: Inhibitory effect of genetically engineered
mesenchymal stem cells with Apoptin on hepatoma cells in vitro and
in vivo. Mol Cell Biochem. 416:193–203. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gupta SK, Tiwari AK, Gandham RK and Sahoo
AP: Combined administration of the apoptin gene and poly (I:C)
induces potent anti-tumor immune response and inhibits growth of
mouse mammary tumors. Int Immunopharmacol. 35:163–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Vragniau C, Hubner JM, Beidler P, Gil S,
Saydaminova K, Lu ZZ, Yumul R, Wang H, Richter M, Sova P, et al:
Studies on the interaction of tumor-derived HD5 alpha defensins
with adenoviruses and implications for oncolytic adenovirus
therapy. J Virol. 91:pii: e02030–16. 2017. View Article : Google Scholar
|
14
|
Mato-Berciano A, Raimondi G, Maliandi MV,
Alemany R, Montoliu L and Fillat C: A NOTCH-sensitive
uPAR-regulated oncolytic adenovirus effectively suppresses
pancreatic tumor growth and triggers synergistic anticancer effects
with gemcitabine and nab-paclitaxel. Oncotarget. 8:22700–22715.
2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li X, Wang P, Li H, Du X, Liu M, Huang Q,
Wang Y and Wang S: The efficacy of oncolytic adenovirus is mediated
by T-cell responses against virus and tumor in syrian hamster
model. Clin Cancer Res. 23:239–249. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim SY, Kang D, Choi HJ, Joo Y, Kim JH and
Song JJ: Prime-boost immunization by both DNA vaccine and oncolytic
adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor
immune activation. Oncotarget. 8:15858–15877. 2017.PubMed/NCBI
|
17
|
Wang S, Shu J, Chen L, Chen X, Zhao J, Li
S, Mou X and Tong X: Synergistic suppression effect on tumor growth
of ovarian cancer by combining cisplatin with a manganese
superoxide dismutase-armed oncolytic adenovirus. Onco Targets Ther.
9:6381–6388. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ma B and Wang Y, Zhou X, Huang P, Zhang R,
Liu T, Cui C, Liu X and Wang Y: Synergistic suppression effect on
tumor growth of hepatocellular carcinoma by combining oncolytic
adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol.
141:419–429. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qi Y, Guo H, Hu N, He D, Zhang S, Chu Y,
Huang Y, Li X, Sun L and Jin N: Preclinical pharmacology and
toxicology study of Ad-hTERT-E1a-Apoptin, a novel dual
cancer-specific oncolytic adenovirus. Toxicol Appl Pharmacol.
280:362–369. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang M, Wang J, Li C, Hu N, Wang K, Ji H,
He D, Quan C, Li X, Jin N and Li Y: Potent growth-inhibitory effect
of a dual cancer-specific oncolytic adenovirus expressing apoptin
on prostate carcinoma. Int J Oncol. 42:1052–1060. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu L, Wu W, Zhu G, Liu L, Guan G, Li X,
Jin N and Chi B: Therapeutic efficacy of an hTERT promoter-driven
oncolytic adenovirus that expresses apoptin in gastric carcinoma.
Int J Mol Med. 30:747–754. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li X, Liu Y, Wen Z, Li C, Lu H, Tian M,
Jin K, Sun L, Gao P, Yang E, et al: Potent anti-tumor effects of a
dual specific oncolytic adenovirus expressing apoptin in vitro and
in vivo. Mol Cancer. 9:102010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yin XZ, Chen S, Li WJ, Zhu YL, Li YQ, Cui
CX, Li M, Cui YL, Zhao J, Li SZ, et al: Inhibitory effect of
apopotin-loaded oncolytic adenovirus ATV on human cervical
carcinoma HeLa cells. Chin J Cancer Biother. 24:1356–1361. 2017.(In
Chinese).
|
24
|
Wang X, Xu L, Wu Q, Liu M, Tang F, Cai Y,
Fan W, Huang H and Gu X: Inhibition of LDHA deliver potential
anticancer performance in renal cell carcinoma. Urol Int.
99:237–244. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Robinson S and Galanis E: Potential and
clinical translation of oncolytic measles viruses. Expert Opin Biol
Ther. 17:353–363. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ungerechts G, Bossow S, Leuchs B, Holm PS,
Rommelaere J, Coffey M, Coffin R, Bell J and Nettelbeck DM: Moving
oncolytic viruses into the clinic: Clinical-grade production,
purification, and characterization of diverse oncolytic viruses.
Mol Ther Methods Clin Dev. 3:160182016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Patil S, Rao RS and Majumdar B: Clinical
trials with oncolytic viruses: Current and future prospects. J
Contemp Dent Pract. 16:i–ii. 2015.
|
28
|
Burke J, Nieva J, Borad MJ and Breitbach
CJ: Oncolytic viruses: Perspectives on clinical development. Curr
Opin Virol. 13:55–60. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Štefančíková L, Lacombe S, Salado D,
Porcel E, Pagáčová E, Tillement O, Lux F, Depeš D, Kozubek S and
Falk M: Effect of gadolinium-based nanoparticles on nuclear DNA
damage and repair in glioblastoma tumor cells. J Nanobiotechnology.
14:632016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sengupta S, Mantha AK, Song H,
Roychoudhury S, Nath S, Ray S and Bhakat KK: Elevated level of
acetylation of APE1 in tumor cells modulates DNA damage repair.
Oncotarget. 7:75197–75209. 2016. View Article : Google Scholar : PubMed/NCBI
|