1
|
Xing M: BRAF mutation in papillary thyroid
cancer: Pathogenic role, molecular bases, and clinical
implications. Endocr Rev. 28:742–762. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gerber TS, Schad A, Hartmann N, Springer
E, Zechner U and Musholt TJ: Targeted next-generation sequencing of
cancer genes in poorly differentiated thyroid cancer. Endocr
Connect. 7:47–55. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK,
Kim TY, Kim WB, Shong YK, Jang SJ, Song DE and Kim WG: Genomic
alterations of anaplastic thyroid carcinoma detected by targeted
massive parallel sequencing in a BRAF (V600E) mutation-prevalent
area. Thyroid. 26:683–690. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nikiforov YE: Molecular analysis of
thyroid tumors. Mod Pathol. 24 Suppl 2:S34–S43. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kondo T, Ezzat S and Asa SL: Pathogenetic
mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer.
6:292–306. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vasko V, Espinosa AV, Scouten W, He H,
Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la
Chapelle A, et al: Gene expression and functional evidence of
epithelial-to-mesenchymal transition in papillary thyroid carcinoma
invasion. Proc Natl Acad Sci USA. 104:2803–2808. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Karakas B, Bachman KE and Park BH:
Mutation of the PIK3CA oncogene in human cancers. Br J Cancer.
94:455–459. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu D, Hou P, Liu Z, Wu G and Xing M:
Genetic alterations in the phosphoinositide 3-kinase/Akt signaling
pathway confer sensitivity of thyroid cancer cells to therapeutic
targeting of Akt and mammalian target of rapamycin. Cancer Res.
69:7311–7319. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wojciechowska-Durczyńska K,
Krawczyk-Rusiecka K, Cyniak-Magierska A, Zygmunt A, Gałecka E and
Lewiński A: Relative quantification of PIK3CA gene expression level
in fine-needle aspiration biopsy thyroid specimens collected from
patients with papillary thyroid carcinoma and non-toxic goitre by
real-time RT-PCR. Thyroid Res. 3:52010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Masago K, Asato R, Fujita S, Hirano S,
Tamura Y, Kanda T, Mio T, Katakami N, Mishima M and Ito J:
Epidermal growth factor receptor gene mutations in papillary
thyroid carcinoma. Int J Cancer. 124:2744–2749. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cha YJ and Koo JS: Next-generation
sequencing in thyroid cancer. J Transl Med. 14:3222016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tuttle RM, Haugen B and Perrier ND:
Updated American joint committee on cancer/tumor-node-metastasis
staging system for differentiated and anaplastic thyroid cancer
(Eighth Edition): What changed and why? Thyroid. 27:751–756. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Volante M, Collini P, Nikiforov YE,
Sakamoto A, Kakudo K, Katoh R, Lloyd RV, LiVolsi VA, Papotti M,
Sobrinho-Simoes M, et al: Poorly differentiated thyroid carcinoma:
The Turin proposal for the use of uniform diagnostic criteria and
an algorithmic diagnostic approach. Am J Surg Pathol. 31:1256–1264.
2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ellison G, Huang S, Carr H, Wallace A,
Ahdesmaki M, Bhaskar S and Mills J: A reliable method for the
detection of BRCA1 and BRCA2 mutations in fixed tumour tissue
utilising multiplex PCR-based targeted next generation sequencing.
BMC Clin Pathol. 15:52015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gremel G, Lee RJ, Girotti MR, Mandal AK,
Valpione S, Garner G, Ayub M, Wood S, Rothwell DG, Fusi A, et al:
Distinct subclonal tumour responses to therapy revealed by
circulating cell-free DNA. Ann Oncol. 27:1959–1965. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA,
Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in
thyroid cancer: Genetic evidence for constitutive activation of the
RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res. 63:1454–1457. 2003.PubMed/NCBI
|
18
|
Namba H, Nakashima M, Hayashi T, Hayashida
N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T and
Yamashita S: Clinical implication of hot spot BRAF mutation, V599E,
in papillary thyroid cancers. J Clin Endocrinol Metab.
88:4393–4397. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Şahpaz A, Önal B, Yeşilyurt A, Han Ü and
Delibaşı T: BRAF (V600E) mutation, RET/PTC1 and PAX8-PPAR gamma
rearrangements in follicular epithelium derived thyroid
lesions-institutional experience and literature review. Balkan Med
J. 32:156–166. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fernandez IJ, Piccin O, Sciascia S,
Cavicchi O, Repaci A, Vicennati V and Fiorentino M: Clinical
significance of BRAF mutation in thyroid papillary cancer.
Otolaryngol Head Neck Surg. 148:919–925. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li C, Aragon Han P, Lee KC, Lee LC, Fox
AC, Beninato T, Thiess M, Dy BM, Sebo TJ, Thompson GB, et al: Does
BRAF V600E mutation predict aggressive features in papillary
thyroid cancer? Results from four endocrine surgery centers. J Clin
Endocrinol Metab. 98:3702–3712. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK,
Lee YJ, Kim KW, Hahn SK, Youn YK, Kim KH, et al: The association of
the BRAF (V600E) mutation with prognostic factors and poor clinical
outcome in papillary thyroid cancer: A meta-analysis. Cancer.
118:1764–1773. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xing M, Alzahrani AS, Carson KA, Shong YK,
Kim TY, Viola D, Elisei R, Bendlová B, Yip L, Mian C, et al:
Association between BRAF V600E mutation and recurrence of papillary
thyroid cancer. J Clin Oncol. 33:42–50. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liang J, Cai W, Feng D, Teng H, Mao F,
Jiang Y, Hu S, Li X, Zhang Y, Liu B and Sun ZS: Genetic landscape
of papillary thyroid carcinoma in the Chinese population. J Pathol.
244:215–226. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yim JH, Kim WG, Jeon MJ, Han JM, Kim TY,
Yoon JH, Hong SJ, Song DE, Gong G, Shong YK and Kim WB: Association
between expression of X-linked inhibitor of apoptosis protein and
the clinical outcome in a BRAF V600E-prevalent papillary thyroid
cancer population. Thyroid. 24:689–694. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee MY, Ku BM, Kim HS, Lee JY, Lim SH, Sun
JM, Lee SH, Park K, Oh YL, Hong M, et al: Genetic alterations and
their clinical implications in high-recurrence risk papillary
thyroid cancer. Cancer Res Treat. 49:906–914. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim WW, Ha TK and Bae SK: Clinical
implications of the BRAF mutation in papillary thyroid carcinoma
and chronic lymphocytic thyroiditis. J Otolaryngol Head Neck Surg.
47:42018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim HJ, Park HK, Byun DW, Suh K, Yoo MH,
Min YK, Kim SW and Chung JH: Iodine intake as a risk factor for
BRAF mutations in papillary thyroid cancer patients from an
iodine-replete area. Eur J Nutr. 57:809–815. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P,
Zhang Y, Shan Z, Teng W and Xing M: Association of high iodine
intake with the T1799A BRAF mutation in papillary thyroid cancer. J
Clin Endocrinol Metab. 94:1612–1617. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Elisei R, Viola D, Torregrossa L, Giannini
R, Romei C, Ugolini C, Molinaro E, Agate L, Biagini A, Lupi C, et
al: The BRAF(V600E) mutation is an independent, poor prognostic
factor for the outcome of patients with low-risk intrathyroid
papillary thyroid carcinoma: Single-institution results from a
large cohort study. J Clin Endocrinol Metab. 97:4390–4398. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Vuong HG, Altibi AM, Abdelhamid AH, Ngoc
PU, Quan VD, Tantawi MY, Elfil M, Vu TL, Elgebaly A, Oishi N, et
al: The changing characteristics and molecular profiles of
papillary thyroid carcinoma over time: A systematic review.
Oncotarget. 8:10637–10649. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jin L, Chen E, Dong S, Cai Y, Zhang X,
Zhou Y, Zeng R, Yang F, Pan C, Liu Y, et al: BRAF and TERT promoter
mutations in the aggressiveness of papillary thyroid carcinoma: A
study of 653 patients. Oncotarget. 7:18346–18355. 2015.
|
33
|
Nakayama H, Yoshida A, Nakamura Y, Hayashi
H, Miyagi Y, Wada N, Rino Y, Masuda M and Imada T: Clinical
significance of BRAF (V600E) mutation and Ki-67 labeling index in
papillary thyroid carcinomas. Anticancer Res. 27:3645–3649.
2007.PubMed/NCBI
|
34
|
Barbaro D, Incensati RM, Materazzi G, Boni
G, Grosso M, Panicucci E, Lapi P, Pasquini C and Miccoli P: The
BRAF V600E mutation in papillary thyroid cancer with positive or
suspected pre-surgical cytological finding is not associated with
advanced stages or worse prognosis. Endocrine. 45:462–468. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Nikiforova MN, Wald AI, Roy S, Durso MB
and Nikiforov YE: Targeted next-generation sequencing panel
(ThyroSeq) for detection of mutations in thyroid cancer. J Clin
Endocrinol Metab. 98:E1852–E1860. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Goldenberg D, Russo M, Houser K, Crist H,
Derr JB, Walter V, Warrick JI, Sheldon KE, Broach J and Bann DV:
Altered molecular profile in thyroid cancers from patients affected
by the three mile island nuclear accident. Laryngoscope. 127 Suppl
3:S1–S9. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Landa I, Ibrahimpasic T, Boucai L, Sinha
R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP,
Xu B, et al: Genomic and transcriptomic hallmarks of poorly
differentiated and anaplastic thyroid cancers. J Clin Invest.
126:1052–1066. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sims D, Sudbery I, Ilott NE, Heger A and
Ponting CP: Sequencing depth and coverage: Key considerations in
genomic analyses. Nat Rev Genet. 15:121–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Walsh T, Lee MK, Casadei S, Thornton AM,
Stray SM, Pennil C, Nord AS, Mandell JB, Swisher EM and King MC:
Detection of inherited mutations for breast and ovarian cancer
using genomic capture and massively parallel sequencing. Proc Natl
Acad Sci USA. 107:12629–12633. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lin MT, Mosier SL, Thiess M, Beierl KF,
Debeljak M, Tseng LH, Chen G, Yegnasubramanian S, Ho H, Cope L, et
al: Clinical validation of KRAS BRAF, and EGFR mutation detection
using next-generation sequencing. Am J Clin Pathol. 141:856–866.
2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lim JY, Hong SW, Lee YS, Kim BW, Park CS,
Chang HS and Cho JY: Clinicopathologic implications of the
BRAF(V600E) mutation in papillary thyroid cancer: A subgroup
analysis of 3130 cases in a single center. Thyroid. 23:1423–1430.
2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen Y, Sadow PM, Suh H, Lee KE, Choi JY,
Suh YJ, Wang TS and Lubitz CC: BRAF(V600E) is correlated with
recurrence of papillary thyroid microcarcinoma: A systematic
review, multi-institutional primary data analysis, and
meta-analysis. Thyroid. 26:248–255. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xing M, Alzahrani AS, Carson KA, Viola D,
Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al:
Association between BRAF V600E mutation and mortality in patients
with papillary thyroid cancer. JAMA. 309:1493–1501. 2013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim TY, Kim WB, Song JY, Rhee YS, Gong G,
Cho YM, Kim SY, Kim SC, Hong SJ and Shong YK: The BRAF mutation is
not associated with poor prognostic factors in Korean patients with
conventional papillary thyroid microcarcinoma. Clin Endocrinol
(Oxf). 63:588–593. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Nikiforov YE: Radiation-induced thyroid
cancer: What we have learned from chernobyl. Endocr Pathol.
17:307–317. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ito Y, Yoshida H, Kihara M, Kobayashi K,
Miya A and Miyauchi A: BRAF(V600E) mutation analysis in papillary
thyroid carcinoma: Is it useful for all patients? World J Surg.
38:679–687. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Pelttari H, Schalin-Jäntti C, Arola J,
Löyttyniemi E, Knuutila S and Välimäki MJ: BRAF V600E mutation does
not predict recurrence after long-term follow-up in TNM stage I or
II papillary thyroid carcinoma patients. APMIS. 120:380–386. 2012.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Shimamura M, Nakahara M, Orim F, Kurashige
T, Mitsutake N, Nakashima M, Kondo S, Yamada M, Taguchi R, Kimura S
and Nagayama Y: Postnatal expression of BRAFV600E does not induce
thyroid cancer in mouse models of thyroid papillary carcinoma.
Endocrinology. 154:4423–4430. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Watanabe R, Hayashi Y, Sassa M, Kikumori
T, Imai T, Kiuchi T and Murata Y: Possible involvement of BRAFV600E
in altered gene expression in papillary thyroid cancer. Endocr J.
56:407–414. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mesa C Jr, Mirza M, Mitsutake N, Sartor M,
Medvedovic M, Tomlinson C, Knauf JA, Weber GF and Fagin JA:
Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells
is associated with gene expression profiles that predict a
preferential role of BRAF in extracellular matrix remodeling.
Cancer Res. 66:6521–6529. 2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Palona I, Namba H, Mitsutake N, Starenki
D, Podtcheko A, Sedliarou I, Ohtsuru A, Saenko V, Nagayama Y,
Umezawa K and Yamashita S: BRAFV600E promotes invasiveness of
thyroid cancer cells through nuclear factor kappaB activation.
Endocrinology. 147:5699–5707. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Franzoni A, Dima M, D'Agostino M, Puppin
C, Fabbro D, Loreto CD, Pandolfi M, Puxeddu E, Moretti S, Celano M,
et al: Prohibitin is overexpressed in papillary thyroid carcinomas
bearing the BRAF(V600E) mutation. Thyroid. 19:247–255. 2009.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Jo YS, Li S, Song JH, Kwon KH, Lee JC, Rha
SY, Lee HJ, Sul JY, Kweon GR, Ro HK, et al: Influence of the BRAF
V600E mutation on expression of vascular endothelial growth factor
in papillary thyroid cancer. J Clin Endocrinol Metab. 91:3667–3670.
2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Giordano TJ, Kuick R, Thomas DG, Misek DE,
Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, et al:
Molecular classification of papillary thyroid carcinoma: Distinct
BRAF RAS, and RET/PTC mutation-specific gene expression profiles
discovered by DNA microarray analysis. Oncogene. 24:6646–6656.
2005. View Article : Google Scholar : PubMed/NCBI
|
55
|
Oishi N, Kondo T, Ebina A, Sato Y, Akaishi
J, Hino R, Yamamoto N, Mochizuki K, Nakazawa T, Yokomichi H, et al:
Molecular alterations of coexisting thyroid papillary carcinoma and
anaplastic carcinoma: Identification of TERT mutation as an
independent risk factor for transformation. Mod Pathol.
30:1527–1537. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Penna GC, Vaisman F, Vaisman M,
Sobrinho-Simões M and Soares P: Molecular markers involved in
tumorigenesis of thyroid carcinoma: Focus on aggressive histotypes.
Cytogenet Genome Res. 150:194–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Jiang L, Chu H and Zheng H: B-Raf mutation
and papillary thyroid carcinoma patients. Oncol Lett. 11:2699–2705.
2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Samuels Y and Velculescu VE: Oncogenic
mutations of PIK3CA in human cancers. Cell Cycle. 3:1221–1224.
2004. View Article : Google Scholar : PubMed/NCBI
|
59
|
Arsenic R, Treue D, Lehmann A, Hummel M,
Dietel M, Denkert C and Budczies J: Comparison of targeted
next-generation sequencing and sanger sequencing for the detection
of PIK3CA mutations in breast cancer. BMC Clin Pathol. 15:202015.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Sharma SV, Bell DW, Settleman J and Haber
DA: Epidermal growth factor receptor mutations in lung cancer. Nat
Rev Cancer. 7:169–181. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
Ciardiello F and Tortora G: EGFR
antagonists in cancer treatment. N Engl J Med. 358:1160–1174. 2008.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Lee DH, Lee GK, Kong SY, Kook MC, Yang SK,
Park SY, Park SH, Keam B, Park DJ, Cho BY, et al: Epidermal growth
factor receptor status in anaplastic thyroid carcinoma. J Clin
Pathol. 60:881–884. 2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Nikiforova MN, Mercurio S, Wald AI, Barbi
de Moura M, Callenberg K, Santana-Santos L, Gooding WE, Yip L,
Ferris RL and Nikiforov YE: Analytical performance of the ThyroSeq
v3 genomic classifier for cancer diagnosis in thyroid nodules.
Cancer. 124:1682–1690. 2018. View Article : Google Scholar : PubMed/NCBI
|