1
|
Bergonié J and Tribondeau L:
Interpretation of some results from radiotherapy and an attempt to
determine a rational treatment technique. 1906. Yale J Biol Med.
76:181–182. 2003.PubMed/NCBI
|
2
|
Timmerman RD and Kavanagh BD: Stereotactic
body radiation therapy. Curr Probl Cancer. 29:120–157. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim MS, Kim W, Park IH, Kim HJ, Lee E,
Jung JH, Cho LC and Song CW: Radiobiological mechanisms of
stereotactic body radiation therapy and stereotactic radiation
surgery. Radiat Oncol J. 33:265–275. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tsang MW: Stereotactic body radiotherapy:
Current strategies and future development. J Thorac Dis. 8 Suppl
6:S517–S527. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sapkaroski D, Osborne C and Knight KA: A
review of stereotactic body radiotherapy-is volumetric modulated
arc therapy the answer? J Med Radiat Sci. 62:142–151. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kavanagh BD, Timmerman RD, Benedict SH, Wu
Q, Schefter TE, Stuhr K, McCourt S, Newman F, Cardinale RM and
Gaspar LF: How should we describe the radioblologic effect of
extracranial stereotactic radlosurgery: Equivalent uniform dose or
tumor control probability? Med Phys. 30:321–324. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hof H, Herfarth KK, Münter M, Hoess A,
Motsch J, Wannenmacher M and Debus JJ: Stereotactic single-dose
radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int J
Radiat Oncol Biol Phys. 56:335–341. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Timmerman R, Papiez L and Suntharalingam
M: Extracranial stereotactic radiation delivery: Expansion of
technology beyond the brain. Technol Cancer Res Treat. 2:153–160.
2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Potters L, Steinberg M, Rose C, Timmerman
R, Ryu S, Hevezi JM, Welsh J, Mehta M, Larson DA and Janjan NA;
American Society for Therapeutic Radiology and Oncology; American
College of Radiology, . American society for therapeutic radiology
and oncology and american college of radiology practice guideline
for the performance of stereotactic body radiation therapy. Int J
Radiat Oncol Biol Phys. 60:1026–1032. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Timmerman RD, Forster KM and Chinsoo Cho
L: Extracranial stereotactic radiation delivery. Semin Radiat
Oncol. 15:202–207. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Barilla J, Lokajíček M, Pisaková H and
Simr P: Analytical model of chemical phase and formation of DSB in
chromosomes by ionizing radiation. Australas Phys Eng Sci Med.
36:11–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sharma A, Singh K and Almasan A: Histone
H2AX phosphorylation: A marker for DNA damage. Methods Mol Biol.
920:613–626. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tanaka T, Halicka D, Traganos F and
Darzynkiewicz Z: Cytometric analysis of DNA damage: Phosphorylation
of histone H2AX as a marker of DNA double-strand breaks (DSBs).
Methods Mol Biol. 523:161–168. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Stark GR and Taylor WR: Control of the
G2/M transition. Mol Biotechnol. 32:227–248. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yan Y, Black CP and Cowan KH:
Irradiation-induced G2/M checkpoint response requires ERK1/2
activation. Oncogene. 26:4689–4698. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu D and Kipps TJ: Reduction in
mitochondrial membrane potential is an early event in
Fas-independent CTL-mediated apoptosis. Cell Immunol. 195:43–52.
1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu Q, Jiang H, Liu Z, Wang Y, Zhao M, Hao
C, Feng S, Guo H, Xu B, Yang Q, et al: Berberine radiosensitizes
human esophageal cancer cells by downregulating homologous
recombination repair protein RAD51. PLoS One. 6:e234272011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Dynan WS and Yoo S: Interaction of Ku
protein and DNA-dependent protein kinase catalytic subunit with
nucleic acids. Nucleic Acids Res. 26:1551–1559. 1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Orthwein A, Fradet-Turcotte A, Noordermeer
SM, Canny MD, Brun CM, Strecker J, Escribano-Diaz C and Durocher D:
Mitosis inhibits DNA double-strand break repair to guard against
telomere fusions. Science. 344:189–193. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Symington LS and Gautier J: Double-strand
break end resection and repair pathway choice. Annu Rev Genet.
45:247–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pitroda SP, Wakim BT, Sood RF, Beveridge
MG, Beckett MA, MacDermed DM, Weichselbaum RR and Khodarev NN:
STAT1-dependent expression of energy metabolic pathways links
tumour growth and radioresistance to the Warburg effect. BMC Med.
7:682009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Khodarev NN, Beckett M, Labay E, Darga T,
Roizman B and Weichselbaum RR: STAT1 is overexpressed in tumors
selected for radioresistance and confers protection from radiation
in transduced sensitive cells. Proc Natl Acad Sci USA.
101:1714–1719. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gatenby RA and Gillies RJ: Why do cancers
have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kondoh H, Lleonart ME, Gil J, Wang J,
Degan P, Peters G, Martinez D, Carnero A and Beach D: Glycolytic
enzymes can modulate cellular life span. Cancer Res. 65:177–185.
2005.PubMed/NCBI
|
25
|
Lo SS, Slotman BJ, Lock M, Nagata Y,
Guckenberger M, Siva S, Foote M, Tan D, The BS, Mayr NA, et al: The
development of stereotactic body radiotherapy in the past decade: A
global perspective. Future Oncol. 11:2721–2733. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Potters L, Kavanagh B, Galvin JM, Hevezi
JM, Janjan NA, Larson DA, Mehta MP, Ryu S, Steinberg M, Timmerman
R, et al: American society for therapeutic radiology and oncology
(ASTRO) and american college of radiology (ACR) practice guideline
for the performance of stereotactic body radiation therapy. Int J
Radiat Oncol Biol Phys. 76:326–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Borek C: Antioxidants and radiation
therapy. J Nutr. 134:3207S–3209S. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Aparicio T, Baer R and Gautier J: DNA
double-strand break repair pathway choice and cancer. DNA Repair
(Amst). 19:169–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Illner D and Scherthan H: Ionizing
irradiation-induced radical stress stalls live meiotic chromosome
movements by altering the actin cytoskeleton. Proc Natl Acad Sci
USA. 110:16027–16032. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu B, Kim ST, Lim DS and Kastan MB: Two
molecularly distinct G(2)/M checkpoints are induced by ionizing
irradiation. Mol Cell Biol. 22:1049–1059. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Marples B, Wouters BG and Joiner MC: An
association between the radiation-induced arrest of G2-phase cells
and low-dose hyper-radiosensitivity: A plausible underlying
mechanism? Radiat Res. 160:38–45. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fingert HJ, Chang JD and Pardee AB:
Cytotoxic, cell cycle, and chromosomal effects of methylxanthines
in human tumor cells treated with alkylating agents. Cancer Res.
46:2463–2467. 1986.PubMed/NCBI
|
33
|
Kinner A, Wu W, Staudt C and Iliakis G:
Gamma-H2AX in recognition and signaling of DNA double-strand breaks
in the context of chromatin. Nucleic Acids Res. 36:5678–5694. 2008.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Helleday T, Lo J, van Gent DC and
Engelward BP: DNA double-strand break repair: From mechanistic
understanding to cancer treatment. DNA Repair (Amst). 6:923–935.
2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rothkamm K, Krüger I, Thompson LH and
Löbrich M: Pathways of DNA double-strand break repair during the
mammalian cell cycle. Mol Cell Biol. 23:5706–5715. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Beucher A, Birraux J, Tchouandong L,
Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA
and Löbrich M: ATM and Artemis promote homologous recombination of
radiation-induced DNA double-strand breaks in G2. EMBO J.
28:3413–3427. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vandersickel V, Depuydt J, Van Bockstaele
B, Perletti G, Philippe J, Thierens H and Vral A: Early increase of
radiation-induced γH2AX foci in a human Ku70/80 knockdown cell line
characterized by an enhanced radiosensitivity. J Radiat Res.
51:633–641. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Saydam O, Saydam N, Glauser DL, Pruschy M,
Dinh-Van V, Hilbe M, Jacobs AH, Ackermann M and Fraefel C: HSV-1
amplicon-mediated post-transcriptional inhibition of Rad51
sensitizes human glioma cells to ionizing radiation. Gene Ther.
14:1143–1151. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Johnson RD and Jasin M: Sister chromatid
gene conversion is a prominent double-strand break repair pathway
in mammalian cells. EMBO J. 19:3398–3407. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Roos WP and Kaina B: DNA damage-induced
cell death: From specific DNA lesions to the DNA damage response
and apoptosis. Cancer Lett. 332:237–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pardo FS, Su M and Borek C: Cyclin D1
induced apoptosis maintains the integrity of the G1/S checkpoint
following ionizing radiation irradiation. Somat Cell Mol Genet.
22:135–144. 1996. View Article : Google Scholar : PubMed/NCBI
|
42
|
Brown JM, Diehn M and Loo BW Jr:
Stereotactic ablative radiotherapy should be combined with a
hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys.
78:323–327. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zimmermann KC, Bonzon C and Green DR: The
machinery of programmed cell death. Pharmacol Ther. 92:57–70. 2001.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Semenza GL: Oxygen sensing, homeostasis,
and disease. N Engl J Med. 365:537–547. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kim JW and Dang CV: Cancer's molecular
sweet tooth and the warburg effect. Cancer Res. 66:8927–8930. 2006.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang T, Marquardt C and Foker J: Aerobic
glycolysis during lymphocyte proliferation. Nature. 261:702–705.
1976. View Article : Google Scholar : PubMed/NCBI
|
47
|
Christofk HR, Vander Heiden MG, Harris MH,
Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and
Cantley LC: The M2 splice isoform of pyruvate kinase is important
for cancer metabolism and tumour growth. Nature. 452:230–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|