Patient‑derived xenograft mouse models: A high fidelity tool for individualized medicine (Review)
- Authors:
- Cong Xu
- Xuelu Li
- Pixu Liu
- Man Li
- Fuwen Luo
-
Affiliations: Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China, Department of Breast Surgery and Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China - Published online on: October 16, 2018 https://doi.org/10.3892/ol.2018.9583
- Pages: 3-10
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
DiMasi JA, Reichert JM, Feldman L and Malins A: Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther. 94:329–335. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kola I and Landis J: Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 3:711–715. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rosfjord E, Lucas J, Li G and Gerber HP: Advances in patient-derived tumor xenografts: From target identification to predicting clinical response rates in oncology. Biochem Pharmacol. 91:135–143. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chawla SP, Cranmer LD, Van Tine BA, Reed DR, Okuno SH, Butrynski JE, Adkins DR, Hendifar AE, Kroll S and Ganjoo KN: Van tine Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J Clin Oncol. 32:3299–3306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P and Mole DR: Hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 69:646–657. 2016. View Article : Google Scholar : PubMed/NCBI | |
Spranger S, Bao R and Gajewski TF: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rivera LB and Bergers G: Cancer. Tumor angiogenesis from foe to friend. Science. 349:694–695. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mungenast F and Thalhammer T: Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 5:1922014. View Article : Google Scholar : PubMed/NCBI | |
Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M and Lukong KE: Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment. Cell Signal. 26:2843–2856. 2014. View Article : Google Scholar : PubMed/NCBI | |
Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, Drake CG and de Bono JS: Prostate cancer. Lancet. 387:70–82. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Shen A, Ding J and Geng M: Molecularly targeted cancer therapy: Some lessons from the past decade. Trends Pharmacol Sci. 35:41–50. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sharpless NE and Depinho RA: The mighty mouse: Genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov. 5:741–754. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Jin S, Rao W, Song F, Yin Q, Wang Y, Wang L, Xi Y, Zhang X, Wang M and Ge H: OVA12, a novel tumor antigen, promotes cancer cell growth and inhibits 5-fluorouracil-induced apoptosis. Cancer Lett. 357:141–151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park H, Kim Y, Sul JW, Jeong IG, Yi HJ, Ahn JB, Kang JS, Yun J, Hwang JJ and Kim CS: Synergistic anticancer efficacy of MEK inhibition and dual PI3K/mTOR inhibition in castration-resistant prostatecancer. Prostate. 75:1747–1759. 2015. View Article : Google Scholar : PubMed/NCBI | |
Girotti MR, Lopes F, Preece N, Niculescu-Duvaz D, Zambon A, Davies L, Whittaker S, Saturno G, Viros A, Pedersen M, et al: Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 27:85–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wykosky J, Hu J, Gomez GG, Taylor T, Villa GR, Pizzo D, VandenBerg SR, Thorne AH, Chen CC, Mischel PS, et al: A urokinase receptor-Bim signaling axis emerges during EGFR inhibitor resistance in mutant EGFR glioblastoma. Cancer Res. 75:394–404. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khaled WT and Liu P: Cancer mouse models: Past, present and future. Semin Cell Dev Biol. 27:54–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hajitou A, Lev DC, Hannay JA, Korchin B, Staquicini FI, Soghomonyan S, Alauddin MM, Benjamin RS, Pollock RE, Gelovani JG, et al: A preclinical model for predicting drug response in soft-tissue sarcoma with targeted AAVP molecular imaging. Proc Natl Acad Sci USA. 105:4471–4476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Nandhu MS, Sim H, Agudelo-Garcia PA, Saldivar JC, Dolan CE, Mora ME, Nuovo GJ, Cole SE and Viapiano MS: Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling. Cancer Res. 72:3873–3885. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kung PP, Martinez R, Zhu Z, Zager M, Blasina A, Rymer I, Hallin J, Xu M, Carroll C, Chionis J, et al: Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Mol Cancer Ther. 13:2104–2115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saland E, Boutzen H, Castellano R, Pouyet L, Griessinger E, Larrue C, de Toni F, Scotland S, David M, Danet-Desnoyers G, et al: A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J. 5:e2972015. View Article : Google Scholar : PubMed/NCBI | |
Santel A, Aleku M, Röder N, Möpert K, Durieux B, Janke O, Keil O, Endruschat J, Dames S, Lange C, et al: Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin Cancer Res. 16:5469–5480. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Hong JH, Park HK, Park JS, Kim BK, Lee JY, Jeong JY, Yoon GS, Inoue M, Choi GS and Lee IK: Colorectal cancer-derived tumor spheroids retain the characteristics of original tumors. Cancer Lett. 367:34–42. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X and Lewis MT: Establishment of patient-derived xenograft (PDX) models of human breast cancer. Curr Protoc Mouse Biol. 3:21–29. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chou J, Fitzgibbon MP, Mortales CL, Towlerton AM, Upton MP, Yeung RS, McIntosh MW and Warren EH: Phenotypic and transcriptional fidelity of patient-derived colon cancer xenografts in immune-deficient mice. PLoS One. 8:e798742013. View Article : Google Scholar : PubMed/NCBI | |
Cho YB, Hong HK, Choi YL, Oh E, Joo KM, Jin J, Nam DH, Ko YH and Lee WY: Colorectal cancer patient-derived xenografted tumors maintain characteristic features of the original tumors. J Surg Res. 187:502–509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, Gelmon K, Chia S, Mar C, Wan A, et al: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 518:422–426. 2015. View Article : Google Scholar : PubMed/NCBI | |
Emes RD, Goodstadt L, Winter EE and Ponting CP: Comparison of the genomes ofhuman and mouse lays the foundation of genome zoology. Hum Mol Genet. 12:701–709. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pelleitier M and Montplaisir S: The nude mouse: A model of deficient T-cell function. Methods Achiev Exp Pathol. 7:149–166. 1975.PubMed/NCBI | |
Lapidot T, Fajerman Y and Kollet O: Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. J Mol Med. 75:664–673. 1997. View Article : Google Scholar : PubMed/NCBI | |
Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, et al: Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 174:6477–6489. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Alunni-Fabbroni M and Sandri MT: Circulating tumour cells in clinical practice: Methods of detection and possible characterization. Methods. 50:289–297. 2010. View Article : Google Scholar : PubMed/NCBI | |
Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW and Terstappen LW: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 10:6897–6904. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD and Marchetti D: The Identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med. 5:180ra482013. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al: Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 345:216–220. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, Corà D, Di Nicolantonio F, Buscarino M, Petti C, et al: A molecularly annotated platform of patient-derived xenografts (‘xenopatients’) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1:508–523. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hughes AD, Marshall JR, Keller E, Powderly JD, Greene BT and King MR: Differential drug responses of circulating tumor cells within patient blood. Cancer Lett. 352:28–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, et al: Tumorigenicity and genetic profiling of circulating tumorcells in small-cell lung cancer. Nat Med. 20:897–903. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peters LJ: Radiation therapy tolerance limits. For one or for all?-Janeway Lecture. Cancer. 77:2379–2385. 1996. View Article : Google Scholar : PubMed/NCBI | |
van Dijk LK, Boerman OC, Kaanders JH and Bussink J: PET Imaging in head and neck cancer patients to monitor treatment response: A future role for EGFR-targeted imaging. Clin Cancer Res. 21:3602–3609. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stebbing J, Paz K, Schwartz GK, Wexler LH, Maki R, Pollock RE, Morris R, Cohen R, Shankar A, Blackman G, et al: Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 120:2006–2015. 2014. View Article : Google Scholar : PubMed/NCBI | |
Garralda E, Paz K, López-Casas PP, Jones S, Katz A, Kann LM, López-Rios F, Sarno F, Al-Shahrour F, Vasquez D, et al: Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res. 20:2476–2484. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jones N, Bonnet F, Sfar S, Lafitte M, Lafon D, Sierankowski G, Brouste V, Banneau G, Tunon de Lara C, Debled M, et al: Comprehensive analysis of PTEN status in breast carcinomas. Int J Cancer. 133:323–334. 2013. View Article : Google Scholar : PubMed/NCBI | |
Berg JS, Amendola LM, Eng C, Van Allen E, Gray SW, Wagle N, Rehm HL, DeChene ET, Dulik MC, Hisama FM, et al: Processes and preliminary outputs for identification of actionable genes as incidental findings in genomic sequence data in the Clinical Sequencing Exploratory Research Consortium. Genet Med. 15:860–867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garraway LA and Jänne PA: Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov. 2:214–226. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chiron M, Bagley RG, Pollard J, Mankoo PK, Henry C, Vincent L, Geslin C, Baltes N and Bergstrom DA: Differential antitumor activity of aflibercept and bevacizumab in patient-derived xenograft models of colorectal cancer. Mol Cancer Ther. 13:1636–1644. 2014. View Article : Google Scholar : PubMed/NCBI | |
Monsma DJ, Cherba DM, Eugster EE, Dylewski DL, Davidson PT, Peterson CA, Borgman AS, Winn ME, Dykema KJ, Webb CP, et al: Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms. Am J Cancer Res. 5:1507–1518. 2015.PubMed/NCBI | |
Clohessy JG and Pandolfi PP: Mouse hospital and co-clinical trial project-from bench to bedside. Nat Rev Clin Oncol. 12:491–498. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lunardi A and Pandolfi PP: A co-clinical platform to accelerate cancer treatment optimization. Trends Mol Med. 21:1–5. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Akbay E, Mikse O, Tupper T, Cheng K, Wang Y, Tan X, Altabef A, Woo SA, Chen L, et al: Co-clinical trials demonstrate superiority of crizotinib to chemotherapy in ALK-rearranged non-small cell lungcancer and predict strategies to overcome resistance. Clin Cancer Res. 20:1204–1211. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kwong LN, Boland GM, Frederick DT, Helms TL, Akid AT, Miller JP, Jiang S, Cooper ZA, Song X, Seth S, et al: Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma. J Clin Invest. 125:1459–1470. 2015. View Article : Google Scholar : PubMed/NCBI | |
Malaney P, Nicosia SV and Davé V: One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Lett. 344:1–12. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nardella C, Lunardi A, Patnaik A, Cantley LC and Pandolfi PP: The APL paradigm and the ‘co-clinical trial’ project. Cancer Discov. 1:108–116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, et al: A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature. 483:613–617. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cassidy JW, Caldas C and Bruna A: Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 75:2963–2968. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, Glogowska MJ, Estes P, Eagles JR, Le PN, et al: XactMice: Humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 35:290–300. 2016. View Article : Google Scholar : PubMed/NCBI | |
Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goéré D, Mariani P, Landron S, Bigot L, Nemati F, Dartigues P, et al: Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 18:5314–5328. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader Ch, de Plater L, Elbaz C, Karboul N, Fontaine JJ, et al: Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat. 133:595–606. 2012. View Article : Google Scholar : PubMed/NCBI | |
DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, et al: Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 17:1514–1520. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, et al: A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73:4885–4897. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, Manuel CA, Edgerton SM, Harrell JC, Elias A and Sartorius CA: Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 135:415–432. 2012. View Article : Google Scholar : PubMed/NCBI | |
Petrillo LA, Wolf DM, Kapoun AM, Wang NJ, Barczak A, Xiao Y, Korkaya H, Baehner F, Lewicki J, Wicha M, et al: Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Res Treat. 135:913–922. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moro M, Bertolini G, Tortoreto M, Pastorino U, Sozzi G and Roz L: Patient-derived xenografts of non small cell lung cancer: Resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. J Biomed Biotechnol. 2012:5685672012. View Article : Google Scholar : PubMed/NCBI | |
Nakajima T, Geddie W, Anayama T, Ko HM, da Cunha Santos G, Boerner S, Wang T, Wang YH, Li M, Pham NA, et al: Patient-derived tumor xenograft models established from samples obtained by endobronchial ultrasound-guided transbronchial needle aspiration. Lung Cancer. 89:110–114. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dangles-Marie V, Pocard M, Richon S, Weiswald LB, Assayag F, Saulnier P, Judde JG, Janneau JL, Auger N, Validire P, et al: Establishment of human colon cancer cell lines from fresh tumors versus xenografts: Comparison of success rate and cell line features. Cancer Res. 67:398–407. 2007. View Article : Google Scholar : PubMed/NCBI | |
Puig I, Chicote I, Tenbaum SP, Arqués O, Herance JR, Gispert JD, Jimenez J, Landolfi S, Caci K, Allende H, et al: A personalized preclinical model to evaluate the metastatic potential of patient-derived colon cancer initiating cells. Clin Cancer Res. 19:6787–6801. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Creighton CJ, Zhang Y, Sen B, Mazumdar T, Myers JN, Lai SY, Woolfson A, Lorenzi MV, Bell D, et al: Tumor grafts derived from patients with head and neck squamous carcinoma authentically maintain the molecular and histologic characteristics of human cancers. J Transl Med. 11:1982013. View Article : Google Scholar : PubMed/NCBI | |
Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E, Farsetti A, Pontecorvi A, Sicinska E and Loda M: Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 176:1901–1913. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wetterauer C, Vlajnic T, Schüler J, Gsponer JR, Thalmann GN, Cecchini M, Schneider J, Zellweger T, Pueschel H, Bachmann A, et al: Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate. 75:585–592. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boone JD, Dobbin ZC, Straughn JM Jr and Buchsbaum DJ: Ovarian and cervical cancer patient derived xenografts: The past, present, and future. Gynecol Oncol. 138:486–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bankert RB, Balu-Iyer SV, Odunsi K, Shultz LD, Kelleher RJ Jr, Barnas JL, Simpson-Abelson M, Parsons R and Yokota SJ: Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS one. 6:e244202011. View Article : Google Scholar : PubMed/NCBI | |
Han C, Shen J, Wang H, Yu L, Qian X, Liu B and Guan W: Personalized primary tumor xenograft model established for the pre-clinical trial to guide postoperative chemotherapy. Med Hypotheses. 79:705–708. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xue A, Julovi SH, Samra JS, et al: Establishment of patient-derived subrenal capsule xenograft of pancreatic cancersin NOD/SCID mice: Potential models for drug responses of personalized chemotherapy. Proceedings of the Australian Health and Medical Research Congress (AHMRC). 2012. | |
Pavía-Jiménez A, Tcheuyap VT and Brugarolas J: Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat Protoc. 9:1848–1859. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mohseni MJ, Amanpour S, Muhammadnejad S, Sabetkish S, Muhammadnejad A, Heidari R, Haddadi M, Mazaheri Z, Vasei M and Kajbafzadeh AM: Establishment of a patient-derived Wilms' tumor xenograft model: A promising tool for individualized cancer therapy. J Pediatr Urol. 10:123–129. 2014. View Article : Google Scholar : PubMed/NCBI |