1
|
Jin MW, Xu SM, An Q and Wang P: A review
of risk factors for childhood leukemia. Eur Rev Med Pharmacol Sci.
20:3760–3764. 2016.PubMed/NCBI
|
2
|
Schlenk RF, Döhner K, Krauter J, Fröhling
S, Corbacioglu A, Bullinger L, Habdank M, Späth D, Morgan M, Benner
A, et al: Mutations and treatment outcome in cytogenetically normal
acute myeloid leukemia. N Engl J Med. 358:1909–1918. 2008.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kawashima K and Fujii T: The lymphocytic
cholinergic system and its biological function. Life Sci.
72:2101–2109. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kawashima K and Fujii T: Expression of
non-neuronal acetylcholine in lymphocytes and its contribution to
the regulation of immune function. Front Biosci. 9:2063–2085. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ofek K and Soreq H: Cholinergic
involvement and manipulation approaches in multiple system
disorders. Chem Biol Interact. 203:113–119. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Russo P, Del Bufalo A, Milic M, Salinaro
G, Fini M and Cesario A: Cholinergic receptors as target for cancer
therapy in a systems medicine perspective. Curr Mol Med.
14:1126–1138. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Paleari L, Grozio A, Cesario A and Russo
P: The cholinergic system and cancer. Semin Cancer Biol.
18:211–217. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shah N, Khurana S, Cheng K and Raufman JP:
Muscarinic receptors and ligands in cancer. Am J Physiol Cell
Physiol. 296:C221–C232. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Campoy FJ, Vidal CJ, Munoz-Delgado E,
Montenegro MF, Cabezas-Herrera J and Nieto-Cerón S: Cholinergic
system and cell proliferation. Chem Biol Interact. 259:257–265.
2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Spindel ER: Muscarinic receptor agonists
and antagonists: Effects on cancer. Handb Exp Pharmacol. 451–468.
2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dang N, Meng X and Song H: Nicotinic
acetylcholine receptors and cancer. Biomed Rep. 4:515–518. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kawashima K, Fujii T, Moriwaki Y and
Misawa H: Critical roles of acetylcholine and the muscarinic and
nicotinic acetylcholine receptors in the regulation of immune
function. Life Sci. 91:1027–1032. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Qian J, Galitovskiy V, Chernyavsky AI,
Marchenko S and Grando SA: Plasticity of the murine spleen T-cell
cholinergic receptors and their role in in vitro differentiation of
naïve CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes
Immun. 12:222–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sato KZ, Fujii T, Watanabe Y, Yamada S,
Ando T, Kazuko F and Kawashima K: Diversity of mRNA expression for
muscarinic acetylcholine receptor subtypes and neuronal nicotinic
acetylcholine receptor subunits in human mononuclear leukocytes and
leukemic cell lines. Neurosci Lett. 266:17–20. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tayebati SK, El-Assouad D, Ricci A and
Amenta F: Immunochemical and immunocytochemical characterization of
cholinergic markers in human peripheral blood lymphocytes. J
Neuroimmunol. 132:147–155. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chotirat S, Suriyo T, Hokland M, Hokland
P, Satayavivad J and Auewarakul CU: Cholinergic activation enhances
retinoic acid-induced differentiation in the human NB-4 acute
promyelocytic leukemia cell line. Blood Cells Mol Dis. 59:77–84.
2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Battisti V, Schetinger MR, Maders LD,
Santos KF, Bagatini MD, Correa MC, Spanevello RM, do Carmo Araújo M
and Morsch VM: Changes in acetylcholinesterase (AchE) activity in
lymphocytes and whole blood in acute lymphoblastic leukemia
patients. Clin Chim Acta. 402:114–118. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dobrovinskaya O, Valencia-Cruz G,
Castro-Sánchez L, Bonales-Alatorre EO, Liñan-Rico L and Pottosin I:
Cholinergic machinery as relevant target in acute lymphoblastic T
leukemia. Front Pharmacol. 7:2902016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cabadak H, Aydin B and Kan B: Regulation
of M2, M3, and M4 muscarinic receptor expression in K562 chronic
myelogenous leukemic cells by carbachol. J Recept Signal Transduct
Res. 31:26–32. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kawashima K and Fujii T: Extraneuronal
cholinergic system in lymphocytes. Pharmacol Ther. 86:29–48. 2000.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Rinner I, Globerson A, Kawashima K,
Korsatko W and Schauenstein K: A possible role for acetylcholine in
the dialogue between thymocytes and thymic stroma.
Neuroimmunomodulation. 6:51–55. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Skok M, Grailhe R, Agenes F and Changeux
JP: The role of nicotinic acetylcholine receptors in lymphocyte
development. J Neuroimmunol. 171:86–98. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Aydin B, Kan B and Cabadak H: The role of
intracellular pathways in the proliferation of human K562 cells
mediated by muscarinic receptors. Leuk Res. 37:1144–1149. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fujii T, Tsuchiya T, Yamada S, Fujimoto K,
Suzuki T, Kasahara T and Kawashima K: Localization and synthesis of
acetylcholine in human leukemic T cell lines. J Neurosci Res.
44:66–72. 1996. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rubinstein H, Lubrano T, Dainko J, Mathews
H, Lange C, Silberman S and Minowada J: Acetylcholinesterase in
cultured human leukemia/lymphoma cell lines. Leuk Res. 8:741–744.
1984. View Article : Google Scholar : PubMed/NCBI
|
26
|
Alea MP, Borroto-Escuela DO,
Romero-Fernandez W, Fuxe K and Garriga P: Differential expression
of muscarinic acetylcholine receptor subtypes in Jurkat cells and
their signaling. J Neuroimmunol. 237:13–22. 2011. View Article : Google Scholar : PubMed/NCBI
|