1
|
Apperley JF: Chronic myeloid leukaemia.
Lancet. 385:1447–1459. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bruns I, Czibere A, Fischer JC, Roels F,
Cadeddu RP, Buest S, Bruennert D, Huenerlituerkoglu AN, Stoecklein
NH, Singh R, et al: The hematopoietic stem cell in chronic phase
CML is characterized by a transcriptional profile resembling normal
myeloid progenitor cells and reflecting loss of quiescence.
Leukemia. 23:892–899. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang B, Ho YW, Huang Q, Maeda T, Lin A,
Lee SU, Hair A, Holyoake TL, Huettner C and Bhatia R: Altered
microenvironmental regulation of leukemic and normal stem cells in
chronic myelogenous leukemia. Cancer Cell. 21:577–592. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Penserga ET and Skorski T: Fusion tyrosine
kinases: A result and cause of genomic instability. Oncogene.
26:11–20. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Melo JV and Barnes DJ: Chronic myeloid
leukaemia as a model of disease evolution in human cancer. Nat Rev
Cancer. 7:441–453. 2007. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Goldman JM and Melo JV: Targeting the
BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med.
344:1084–1086. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Goldman JM and Melo JV: Chronic myeloid
leukemia-advances in biology and new approaches to treatment. N
Engl J Med. 349:1451–1464. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou H, Mak PY, Mu H, Mak DH, Zeng Z,
Cortes J, Liu Q, Andreeff M and Carter BZ: Combined inhibition of
β-catenin and Bcr-Abl synergistically targets tyrosine kinase
inhibitor-resistant blast crisis chronic myeloid leukemia blasts
and progenitors in vitro and in vivo. Leukemia. 31:2065–2074. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Jin L, Tabe Y, Konoplev S, Xu Y, Leysath
CE, Lu H, Kimura S, Ohsaka A, Rios MB, Calvert L, et al: CXCR4
up-regulation by imatinib induces chronic myelogenous leukemia
(CML) cell migration to bone marrow stroma and promotes survival of
quiescent CML cells. Mol Cancer Ther. 7:48–58. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Schroeder T, Geyh S, Germing U and Hass R:
Mesenchymal stromal cells in myeloid malignancies. Blood Res.
51:225–232. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Frenette PS, Pinho S, Lucas D and
Scheiermann C: Mesenchymal stem cell: Keystone of the hematopoietic
stem cell niche and a stepping-stone for regenerative medicine.
Annu Rev Immunol. 31:285–316. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Geyh S, Rodriguez-Paredes M, Jäger P,
Khandanpour C, Cadeddu RP, Gutekunst J, Wilk CM, Fenk R, Zilkens C,
Hermsen D, et al: Functional inhibition of mesenchymal stromal
cells in acute myeloid leukemia. Leukemia. 30:683–691. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Geyh S, Oz S, Cadeddu RP, Fröbel J,
Brückner B, Kündgen A, Fenk R, Bruns I, Zilkens C, Hermsen D, et
al: Insufficient stromal support in MDS results from molecular and
functional deficits of mesenchymal stromal cells. Leukemia.
27:1841–1851. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao Y, Wu D, Fei C, Guo J, Gu S, Zhu Y,
Xu F, Zhang Z, Wu L, Li X and Chang C: Down-regulation of Dicer1
promotes cellular senescence and decreases the differentiation and
stem cell-supporting capacities of mesenchymal stromal cells in
patients with myelodysplastic syndrome. Haematologica. 100:194–204.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Blau O, Baldus CD, Hofmann WK, Thiel G,
Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram
A, et al: Mesenchymal stromal cells of myelodysplastic syndrome and
acute myeloid leukemia patients have distinct genetic abnormalities
compared with leukemic blasts. Blood. 118:5583–5592. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bernheim A: Cytogenomics of cancers: From
chromosome to sequence. Mol Oncol. 4:309–322. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Simons A, Shaffer LG and Hastings RJ:
Cytogenetic nomenclature: Changes in the ISCN 2013 compared to the
2009 Edition. Cytogenet Genome Res. 141:1–6. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for cellular
therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lopez-Villar O, Garcia JL, Sanchez-Guijo
FM, Robledo C, Villaron EM, Hernández-Campo P, Lopez-Holgado N,
Diez-Campelo M, Barbado MV, Perez-Simon JA, et al: Both expanded
and uncultured mesenchymal stem cells from MDS patients are
genomically abnormal, showing a specific genetic profile for the
5q-syndrome. Leukemia. 23:664–672. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Campisi J and d'Adda di Fagagna F:
Cellular senescence: When bad things happen to good cells. Nat Rev
Mol Cell Biol. 8:729–740. 2007. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Rupec RA, Jundt F, Rebholz B, Eckelt B,
Weindl G, Herzinger T, Flaig MJ, Moosmann S, Plewig G, Dörken B, et
al: Stroma-mediated dysregulation of myelopoiesis in mice lacking I
kappa B alpha. Immunity. 22:479–491. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Schepers K, Pietras E, Reynaud D, Flach J,
Binnewies M, Garg T, Wagers AJ, Hsiao EC and Passegué E:
Myeloproliferative neoplasia remodels the endosteal bone marrow
niche into a self-reinforcing leukemic niche. Cell Stem Cell.
13:285–299. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fu S, Wei J, Wang G, Wang B, Wang Y, Lai X
and Huang H: The key role of PML in IFN-α induced cellular
senescence of human mesenchymal stromal cells. Int J Oncol.
46:351–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Walenda T, Bork S, Horn P, Wein F,
Saffrich R, Diehlmann A, Eckstein V, Ho AD and Wagner W: Co-culture
with mesenchymal stromal cells increases proliferation and
maintenance of haematopoietic progenitor cells. J Cell Mol Med.
14:337–350. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kumar B, Garcia M, Weng L, Jung X,
Murakami JL, Hu X, McDonald T, Lin A, Kumar AR, DiGiusto DL, et al:
Acute myeloid leukemia transforms the bone marrow niche into a
leukemia-permissive microenvironment through exosome secretion.
Leukemia. 32:575–587. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Barrera-Ramirez J, Lavoie JR, Maganti HB,
Stanford WL, Ito C, Sabloff M, Brand M, Rosu-Myles M, Le Y and
Allan DS: Micro-RNA profiling of exosomes from marrow-derived
mesenchymal stromal cells in patients with acute myeloid leukemia:
Implications in leukemogenesis. Stem Cell Rev. 13:817–825. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Shah MY, Ferracin M, Pileczki V, Chen B,
Redis R, Fabris L, Zhang X, Ivan C, Shimizu M, Rodriguez-Aguayo C,
et al: Cancer-associated rs6983267 SNP and its accompanying long
noncoding RNA CCAT2 induce myeloid malignancies via unique
SNP-specific RNA mutations. Genome Res. 28:432–447. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hong DS, Angelo LS and Kurzrock R:
Interleukin-6 and its receptor in cancer: Implications for
translational therapeutics. Cancer. 110:1911–1928. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hoggatt J, Kfoury Y and Scadden DT:
Hematopoietic stem cell niche in health and disease. Annu Rev
Pathol. 11:555–581. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schepers K, Campbell TB and Passegué E:
Normal and leukemic stem cell niches: Insights and therapeutic
opportunities. Cell Stem Cell. 16:254–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hanoun M, Zhang D, Mizoguchi T, Pinho S,
Pierce H, Kunisaki Y, Lacombe J, Armstrong SA, Dührsen U and
Frenette PS: Acute myelogenous leukemia-induced sympathetic
neuropathy promotes malignancy in an altered hematopoietic stem
cell niche. Cell Stem Cell. 15:365–375. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jurczyszyn A, Czepiel J, Gdula-Argasińska
J, Perucki W, Skotnicki AB and Majka M: The analysis of the
relationship between multiple myeloma cells and their
microenvironment. J Cancer. 6:160–168. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sperling AS, Gibson CJ and Ebert BL: The
genetics of myelodysplastic syndrome: From clonal haematopoiesis to
secondary leukaemia. Nat Rev Cancer. 17:5–19. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jootar S, Pornprasertsud N, Petvises S,
Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A and
Hongeng S: Bone marrow derived mesenchymal stem cells from chronic
myeloid leukemia t(9;22) patients are devoid of Philadelphia
chromosome and support cord blood stem cell expansion. Leuk Res.
30:1493–1498. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wöhrer S, Rabitsch W, Shehata M, Kondo R,
Esterbauer H, Streubel B, Sillaber C, Raderer M, Jaeger U,
Zielinski C and Valent P: Mesenchymal stem cells in patients with
chronic myelogenous leukaemia or bi-phenotypic Ph+ acute leukaemia
are not related to the leukaemic clone. Anticancer Res.
27:3837–3841. 2007.PubMed/NCBI
|
37
|
Hamidi T, Singh AK and Chen T: Genetic
alterations of DNA methylation machinery in human diseases.
Epigenomics. 7:247–265. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Akhavan-Niaki H and Samadani AA: DNA
methylation and cancer development: Molecular mechanism. Cell
Biochem Biophys. 67:501–513. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Weckselblatt B and Rudd MK: Human
structural variation: Mechanisms of chromosome rearrangements.
Trends Genet. 31:587–599. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
University of Chicago Hematopoietic
Malignancies Cancer Risk Team: How I diagnose and manage
individuals at risk for inherited myeloid malignancies. Blood.
128:1800–1813. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ben-David U, Mayshar Y and Benvenisty N:
Large-scale analysis reveals acquisition of lineage-specific
chromosomal aberrations in human adult stem cells. Cell Stem Cell.
9:97–102. 2011. View Article : Google Scholar : PubMed/NCBI
|