Sirtuin 1 and oral cancer (Review)
- Authors:
- Shajedul Islam
- Yoshihiro Abiko
- Osamu Uehara
- Itsuo Chiba
-
Affiliations: Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061‑0293, Japan, Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061‑0293, Japan - Published online on: November 16, 2018 https://doi.org/10.3892/ol.2018.9722
- Pages: 729-738
This article is mentioned in:
Abstract
Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A and Altucci L: Sirtuin functions and modulation: From chemistry to the clinic. Clin Epigenetics. 8:612016. View Article : Google Scholar : PubMed/NCBI | |
Deng CX: SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 5:147–152. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bosch-Presegué L and Vaquero A: The dual role of sirtuins in cancer. Genes Cancer. 2:648–662. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, Kim S, Xu X, Zheng Y, Chilton B, et al: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 14:312–323. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen IC, Chiang WF, Huang HH, Chen PF, Shen YY and Chiang HC: Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol Cancer. 13:2542014. View Article : Google Scholar : PubMed/NCBI | |
Kang YY, Sun FL, Zhang Y and Wang Z: SIRT1 acts as a potential tumor suppressor in oral squamous cell carcinoma. J Chin Med Assoc. 81:416–422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Murofushi T, Tsuda H, Mikami Y, Yamaguchi Y and Suzuki N: CAY10591, a SIRT1 activator, suppresses cell growth, invasion, and migration in gingival epithelial carcinoma cells. J Oral Sci. 59:415–423. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiong P, Li YX, Tang YT and Chen HG: Proteomic analyses of Sirt1-mediated cisplatin resistance in OSCC cell line. Protein J. 30:499–508. 2011. View Article : Google Scholar : PubMed/NCBI | |
Warnakulasuriya S: Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45:309–316. 2009. View Article : Google Scholar : PubMed/NCBI | |
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Betel-quid and areca-nut chewing and some areca-nut-derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 85:1–334. 2004.PubMed/NCBI | |
Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, et al: Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 107:323–337. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P and Reinberg D: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 16:93–105. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L and Reinberg D: SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 450:440–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M and Blasco MA: SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 191:1299–1313. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Zhang X, Sengupta N, Lane WS and Seto E: SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell. 27:149–162. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, Cho MH, Park GH and Lee KH: SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 39:8–13. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sawada M, Sun W, Hayes P, Leskov K, Boothman DA and Matsuyama S: Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol. 5:320–329. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K and Motoyama N: SIRT1 is a critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 16:237–243. 2005.PubMed/NCBI | |
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M and Guarente L: Mammalian SIRT1 represses forkhead transcription factors. Cell. 116:551–563. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N, et al: Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab. 2:67–76. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yi J and Luo J: SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta. 1804:1684–1689. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, Koomen J, Chen J, Lane WS and Seto E: SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol. 31:4720–4734. 2011. View Article : Google Scholar : PubMed/NCBI | |
Glozak MA, Sengupta N, Zhang X and Seto E: Acetylation and deacetylation of non-histone proteins. Gene. 363:15–23. 2005. View Article : Google Scholar : PubMed/NCBI | |
Glozak MA and Seto E: Histone deacetylases and cancer. Oncogene. 26:5420–5432. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A and Nagy TR: SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 67:6612–6618. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen HC, Jeng YM, Yuan RH, Hsu HC and Chen YL: SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 19:2011–2019. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hao C, Zhu PX, Yang X, Han ZP, Jiang JH, Zong C, Zhang XG, Liu WT, Zhao QD, Fan TT, et al: Overexpression of SIRT1 promotes metastasis through an epithelial-mesenchymal transition in hepatocellular carcinoma. BMC Cancer. 14:9782014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sun K, Jiao S, Cai N, Zhao X, Zou H, Xie Y, Wang Z, Zhong M and Wei L: High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep. 4:74812014. View Article : Google Scholar : PubMed/NCBI | |
Zhao G, Qin Q, Zhang J, Liu Y, Deng S, Liu L, Wang B, Tian K and Wang C: Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer. Ann Surg Oncol. 20 Suppl 3:S301–S311. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stunkel W, Peh BK, Tan YC, Nayagam VM, Wang X, Salto-Tellez M, Ni B, Entzeroth M and Wood J: Function of the SIRT1 protein deacetylase in cancer. Biotechnol J. 2:1360–1368. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ford J, Jiang M and Milner J: Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65:10457–10463. 2005. View Article : Google Scholar : PubMed/NCBI | |
He Z, Yi J, Jin L, Pan B, Chen L and Song H: Overexpression of Sirtuin-1 is associated with poor clinical outcome in esophageal squamous cell carcinoma. Tumour Biol. 37:7139–7148. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hida Y, Kubo Y, Murao K and Arase S: Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res. 299:103–106. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, Craddock C and Turner BM: Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 19:1751–1759. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jung W, Hong KD, Jung WY, Lee E, Shin BK, Kim HK, Kim A and Kim BH: SIRT1 expression is associated with good prognosis in colorectal cancer. Korean J Pathol. 47:332–339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jang SH, Min KW, Paik SS and Jang KS: Loss of SIRT1 histone deacetylase expression associates with tumour progression in colorectal adenocarcinoma. J Clin Pathol. 65:735–739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, et al: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 3:e20202008. View Article : Google Scholar : PubMed/NCBI | |
Voelter-Mahlknecht S and Mahlknecht U: The sirtuins in the pathogenesis of cancer. Clin Epigenetics. 1:71–83. 2010. View Article : Google Scholar : PubMed/NCBI | |
Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, et al: SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21:2644–2658. 2007. View Article : Google Scholar : PubMed/NCBI | |
Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV and Dai Y: SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 31:4619–4629. 2012. View Article : Google Scholar : PubMed/NCBI | |
Verrecchia F and Mauviel A: Transforming growth factor-beta and fibrosis. World J Gastroenterol. 13:3056–3062. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ekanayaka RP and Tilakaratne WM: Oral submucous fibrosis: Review on mechanisms of malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol. 122:192–199. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang YC, Lin CW, Yu CC, Wang BY, Huang YH, Hsieh YC, Kuo YL and Chang WW: Resveratrol suppresses myofibroblast activity of human buccal mucosal fibroblasts through the epigenetic inhibition of ZEB1 expression. Oncotarget. 7:12137–12149. 2016.PubMed/NCBI | |
Uehara O, Takimoto K, Morikawa T, Harada F, Takai R, Adhikari BR, Itatsu R, Nakamura T, Yoshida K, Matsuoka H, et al: Upregulated expression of MMP-9 in gingival epithelial cells induced by prolonged stimulation with arecoline. Oncol Lett. 14:1186–1192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiba I, Muthumala M, Yamazaki Y, Uz Zaman A, Iizuka T, Amemiya A, Shibata T, Kashiwazaki H, Sugiura C and Fukuda H: Characteristics of mutations in the p53 gene of oral squamous-cell carcinomas associated with betel-quid chewing in Sri Lanka. Int J Cancer. 77:839–842. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wei B, Guo C, Liu S and Sun MZ: Annexin A4 and cancer. Clin Chim Acta. 447:72–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, Keogh A, Tschan MP, Candinas D, Vorburger SA and Stroka D: Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS One. 7:e334332012. View Article : Google Scholar : PubMed/NCBI | |
Ceccacci E and Minucci S: Inhibition of histone deacetylases in cancer therapy: Lessons from leukaemia. Br J Cancer. 114:605–611. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Jing H and Lin H: Sirtuin inhibitors as anticancer agents. Future Med Chem. 6:945–966. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Cao Q, Chen C, Du X, Jin B and Pan J: Tenovin-6-mediated inhibition of SIRT1/2 induces apoptosis in acute lymphoblastic leukemia (ALL) cells and eliminates ALL stem/progenitor cells. BMC Cancer. 15:2262015. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Zhou J, Jin B and Pan J: Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci Rep. 6:226222016. View Article : Google Scholar : PubMed/NCBI | |
Eckschlager T, Plch J, Stiborova M and Hrabeta J: Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 18(pii): E14142017. View Article : Google Scholar : PubMed/NCBI | |
Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M, Kozaki K, Akishita M, Ouchi Y and Kaneki M: Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 25:176–185. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bhalla S and Gordon LI: Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther. 17:300–309. 2016. View Article : Google Scholar : PubMed/NCBI | |
Süssmuth SD, Haider S, Landwehrmeyer GB, Farmer R, Frost C, Tripepi G, Andersen CA, Di Bacco M, Lamanna C, Diodato E, et al: An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington's disease. Br J Clin Pharmacol. 79:465–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA and Bedalov A: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66:4368–4377. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P and Sachchidanand: Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells. Biochem Biophys Res Commun. 401:13–19. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lai YH, Lin SY, Wu YS, Chen HW and Chen JJW: AC-93253 iodide, a novel Src inhibitor, suppresses NSCLC progression by modulating multiple Src-related signaling pathways. J Hematol Oncol. 10:1722017. View Article : Google Scholar : PubMed/NCBI | |
Rotili D, Tarantino D, Nebbioso A, Paolini C, Huidobro C, Lara E, Mellini P, Lenoci A, Pezzi R, Botta G, et al: Discovery of salermide-related sirtuin inhibitors: Binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J Med Chem. 55:10937–10947. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lara E, Mai A, Calvanese V, Altucci L, Lopez Nieva P, Martinez Chantar ML, Varela Rey M, Rotili D, Nebbioso A, Ropero S, et al: Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene. 28:781–791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Chen K, Cheng L, Yan B, Qian W, Cao J, Li J, Wu E, Ma Q and Yang W: Resveratrol and cancer treatment: Updates. Ann N Y Acad Sci. 1403:59–69. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chauhan D, Bandi M, Singh AV, Ray A, Raje N, Richardson P and Anderson KC: Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br J Haematol. 155:588–598. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tasoulas J, Giaginis C, Patsouris E, Manolis E and Theocharis S: Histone deacetylase inhibitors in oral squamous cell carcinoma treatment. Expert Opin Investig Drugs. 24:69–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bruzzese F, Leone A, Rocco M, Carbone C, Piro G, Caraglia M, Di Gennaro E and Budillon A: HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J Cell Physiol. 226:2378–2390. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Endo M, Shinohara F, Echigo S and Rikiishi H: Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 64:1115–1122. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eriksson I, Joosten M, Roberg K and Ollinger K: The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis. Exp Cell Res. 319:12–20. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Suzuki M, Sato Y, Echigo S and Rikiishi H: Sequence-dependent interaction between cisplatin and histone deacetylase inhibitors in human oral squamous cell carcinoma cells. Int J Oncol. 28:1233–1241. 2006.PubMed/NCBI | |
Shoji M, Ninomiya I, Makino I, Kinoshita J, Nakamura K, Oyama K, Nakagawara H, Fujita H, Tajima H, Takamura H, et al: Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in esophageal squamous cell carcinoma. Int J Oncol. 40:2140–2146. 2012.PubMed/NCBI | |
Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, Teo SH, Saunders N and Cheong SC: Valproic acid: growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck. 34:344–353. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Wang WM, Ji Y, Wang Y and Li DW: Effects of sodium butyrate on proliferation of human oral squamous carcinoma cell line and expression of p27Kip1. Zhonghua Kou Qiang Yi Xue Za Zhi. 45:619–622. 2010.PubMed/NCBI | |
Lin Z and Fang D: The roles of SIRT1 in cancer. Genes Cancer. 4:97–104. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salminen A, Kaarniranta K and Kauppinen A: Crosstalk between oxidative stress and SIRT1: Impact on the ageing process. Int J Mol Sci. 14:3834–3859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Agarwal SK: Integrins and cadherins as therapeutic targets in fibrosis. Front Pharmacol. 5:1312014. View Article : Google Scholar : PubMed/NCBI | |
Xue H, Atakilit A, Zhu W, Li X, Ramos DM and Pytela R: Role of the avb6 integrin in human oral squamous cell carcinoma growth in vivo and in vitro. Biochem Biophys Res Commun. 288:610–618. 2008. View Article : Google Scholar | |
Xu M, Yin L, Cai Y, Hu Q, Huang J, Ji Q, Hu Y, Huang W, Liu F, Shi S and Deng X: Epigenetic regulation of integrin β6 transcription induced by TGF-β1 in human oral squamous cell carcinoma cells. J Cell Biochem. 119:4193–4204. 2018. View Article : Google Scholar : PubMed/NCBI |