Angiogenesis in cutaneous T‑cell lymphoma ‑ proteomic approaches (Review)
- Authors:
- Cristiana Tanase
- Ionela Daniela Popescu
- Ana‑Maria Enciu
- Ancuta Augustina Gheorghisan‑Galateanu
- Elena Codrici
- Simona Mihai
- Lucian Albulescu
- Laura Necula
- Radu Albulescu
-
Affiliations: Department of Biochemistry‑Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania, Department of Cellular and Molecular Medicine,‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania - Published online on: November 19, 2018 https://doi.org/10.3892/ol.2018.9734
- Pages: 4060-4067
-
Copyright: © Tanase et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Patterson-Fortin J and Moliterno AR: Molecular pathogenesis of myeloproliferative neoplasms: Influence of age and gender. Curr Hematol Malig Rep. 12:424–431. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwan W and North TE: Netting novel regulators of hematopoiesis and hematologic malignancies in zebrafish. Curr Top Dev Biol. 124:125–160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deininger MW, Tyner JW and Solary E: Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer. 17:425–440. 2017. View Article : Google Scholar : PubMed/NCBI | |
Swerdlow SH, Harris NL, Campo E, Pileri SA, Stein H, Jaffe ES and Thiele J: WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. 2. 4th. IARC press; Lyon: 2017 | |
Jiang M, Bennani NN and Feldman AL: Lymphoma classification update: T-cell lymphomas, Hodgkin lymphomas, and histiocytic/dendritic cell neoplasms. Expert Rev Hematol. 10:239–249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 127:2375–2390. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matutes E: The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms. Int J Lab Hematol. 40:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lupu M, Caruntu A, Caruntu C, Papagheorghe LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki M, et al: Neuroendocrine factors: The missing link in non melanoma skin cancer (Review). Oncol Rep. 38:1327–1340. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scarisbrick JJ, Hodak E, Bagot M, Stranzenbach R, Stadler R, Ortiz-Romero PL, Papadavid E, Evison F, Knobler R, Quaglino P, et al: Blood classification and blood response criteria in mycosis fungoides and Sézary syndrome using flow cytometry: Recommendations from the EORTC cutaneous lymphoma task force. Eur J Cancer. 93:47–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shahrabi S, Rezaeeyan H, Ahmadzadeh A, Shahjahani M and Saki N: Bone marrow blood vessels: Normal and neoplastic niche. Oncol Rev. 10:3062016. View Article : Google Scholar : PubMed/NCBI | |
Vacca A, Moretti S, Ribatti D, Pellegrino A, Pimpinelli N, Bianchi B, Bonifazi E, Ria R, Serio G and Dammacco F: Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer. 33:1685–1692. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mazur G, Woźniak Z, Wróbel T, Maj J and Kuliczkowski K: Increased angiogenesis in cutaneous T-cell lymphomas. Pathol Oncol Res. 10:34–36. 2004. View Article : Google Scholar : PubMed/NCBI | |
Miyagaki T, Sugaya M, Oka T, Takahashi N, Kawaguchi M, Suga H, Fujita H, Yoshizaki A, Asano Y and Sato S: Placental growth factor and vascular endothelial growth factor together regulate tumour progression via increased vasculature in cutaneous T-cell lymphoma. Acta Derm Venereol. 97:586–592. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levine AM, Tulpule A, Quinn DI, Gorospe G III, Smith DL, Hornor L, Boswell WD, Espina BM, Groshen SG, Masood R, et al: Phase I study of antisense oligonucleotide against vascular endothelial growth factor: Decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol. 24:1712–1719. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zain J and O'Connor OA: Targeting histone deacetylases in the treatment of B- and T-cell malignancies. Invest New Drugs. 28:S58–S78. 2010. View Article : Google Scholar : PubMed/NCBI | |
Litvinov IV, Netchiporouk E, Cordeiro B, Zargham H, Pehr K, Gilbert M, Zhou Y, Moreau L, Woetmann A, Ødum N, et al: Ectopic expression of embryonic stem cell and other developmental genes in cutaneous T-cell lymphoma. OncoImmunology. 3:e9700252014. View Article : Google Scholar : PubMed/NCBI | |
Tanase C, Albulescu R, Codrici E, Calenic B, Popescu ID, Mihai S, Necula L, Cruceru ML and Hinescu ME: Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma. OncoTargets Ther. 8:81–90. 2014. View Article : Google Scholar | |
Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, Petersen DL, Nastasi C, Krejsgaard T, Lindahl LM, et al: Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget. 6:20555–20569. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bagherani N and Smoller BR: An overview of cutaneous T cell lymphomas. F1000 Res. 5:52016. View Article : Google Scholar | |
Kabasawa M, Sugaya M, Oka T, Takahashi N, Kawaguchi M, Suga H, Miyagaki T, Takahashi T, Shibata S, Fujita H, et al: Decreased interleukin-21 expression in skin and blood in advanced mycosis fungoides. J Dermatol. 43:819–822. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vieyra-Garcia PA, Wei T, Naym DG, Fredholm S, Fink-Puches R, Cerroni L, Odum N, O'Malley JT, Gniadecki R and Wolf P: STAT3/5-dependent IL9 overexpression contributes to neoplastic cell survival in mycosis fungoides. Clin Cancer Res. 22:3328–3339. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ikeda S, Kitadate A, Ito M, Abe F, Nara M, Watanabe A, Takahashi N, Miyagaki T, Sugaya M and Tagawa H: Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma. Oncotarget. 7:13563–13574. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lauenborg B, Christensen L, Ralfkiaer U, Kopp KL, Jønson L, Dabelsteen S, Bonefeld CM, Geisler C, Gjerdrum LM, Zhang Q, et al: Malignant T-cells express lymphotoxin α and drive endothelial activation in cutaneous T-cell lymphoma. Oncotarget. 6:15235–15249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maj J, Jankowska-Konsur AM, Hałoń A, Woźniak Z, Plomer-Niezgoda E and Reich A: Expression of CXCR4 and CXCL12 and their correlations to the cell proliferation and angiogenesis in mycosis fungoides. Postepy Dermatol Alergol. 32:437–442. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gallardo F, Sandoval J, Díaz-Lagares A, Garcia R, D'Altri T, González J, Alegre V, Servitje O, Crujeiras AB, Stefánsson ÓA, et al: Notch1 pathway activation results from the epigenetic abrogation of notch-related microRNAs in mycosis fungoides. J Invest Dermatol. 135:3144–3152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lindahl LM, Fredholm S, Joseph C, Nielsen BS, Jønson L, Willerslev-Olsen A, Gluud M, Blümel E, Petersen DL, Sibbesen N, et al: STAT5 induces miR-21 expression in cutaneous T cell lymphoma. Oncotarget. 7:45730–45744. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abe F, Kitadate A, Ikeda S, Yamashita J, Nakanishi H, Takahashi N, Asaka C, Teshima K, Miyagaki T, Sugaya M, et al: Histone deacetylase inhibitors inhibit metastasis by restoring a tumor suppressive microRNA-150 in advanced cutaneous T-cell lymphoma. Oncotarget. 8:7572–7585. 2017. View Article : Google Scholar : PubMed/NCBI | |
da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, Vermeer MH, Rabadan R, Ferrando A and Palomero T: The mutational landscape of cutaneous T-cell lymphoma and Sézary syndrome. Nat Genet. 47:1465–1470. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bosseila M, Sayed Sayed K, El-Din Sayed SS and Abd El Monaem A: Evaluation of angiogenesis in early mycosis fungoides patients: Dermoscopic and immunohistochemical study. Dermatology. 231:82–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gratzinger D, Zhao S, Tibshirani RJ, Hsi ED, Hans CP, Pohlman B, Bast M, Avigdor A, Schiby G, Nagler A, et al: Prognostic significance of VEGF, VEGF receptors, and microvessel density in diffuse large B cell lymphoma treated with anthracycline-based chemotherapy. Lab Invest. 88:38–47. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mendt M and Cardier JE: Stromal-derived factor-1 and its receptor, CXCR4, are constitutively expressed by mouse liver sinusoidal endothelial cells: Implications for the regulation of hematopoietic cell migration to the liver during extramedullary hematopoiesis. Stem Cells Dev. 21:2142–2151. 2012. View Article : Google Scholar : PubMed/NCBI | |
Daggett RN, Kurata M, Abe S, Onishi I, Miura K, Sawada Y, Tanizawa T and Kitagawa M: Expression dynamics of CXCL12 and CXCR4 during the progression of mycosis fungoides. Br J Dermatol. 171:722–731. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY and Suda T: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 118:149–161. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kawaguchi M, Sugaya M, Suga H, Miyagaki T, Ohmatsu H, Fujita H, Asano Y, Tada Y, Kadono T and Sato S: Serum levels of angiopoietin-2, but not angiopoietin-1, are elevated in patients with erythrodermic cutaneous T-cell lymphoma. Acta Derm Venereol. 94:9–13. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alshenawy HA: Prognostic significance of vascular endothelial growth factor, basic fibroblastic growth factor, and microvessel density and their relation to cell proliferation in B-cell non-Hodgkin's lymphoma. Ann Diagn Pathol. 14:321–327. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lauenborg B, Litvinov IV, Zhou Y, Willerslev-Olsen A, Bonefeld CM, Nastasi C, Fredholm S, Lindahl LM, Sasseville D, Geisler C, et al: Malignant T-cells activate endothelial cells via IL-17 F. Blood Cancer J. 7:e5862017. View Article : Google Scholar : PubMed/NCBI | |
Furudate S, Fujimura T, Kakizaki A, Kambayashi Y, Asano M, Watabe A and Aiba S: The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. Exp Dermatol. 25:107–112. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tuzova M, Richmond J, Wolpowitz D, Curiel-Lewandrowski C, Chaney K, Kupper T and Cruikshank W: CCR4+ T-cell recruitment to the skin in mycosis fungoides: Potential contributions by thymic stromal lymphopoietin and interleukin-16. Leuk Lymphoma. 56:440–449. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hashikawa K, Yasumoto S, Nakashima K, Arakawa F, Kiyasu J, Kimura Y, Saruta H, Nakama T, Yasuda K, Tashiro K, et al: Microarray analysis of gene expression by microdissected epidermis and dermis in mycosis fungoides and adult T-cell leukemia/lymphoma. Int J Oncol. 45:1200–1208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Furudate S, Fujimura T, Kakizaki A, Hidaka T, Asano M and Aiba S: Tumor-associated M2 macrophages in mycosis fungoides acquire immunomodulatory function by interferon alpha and interferon gamma. J Dermatol Sci. 83:182–189. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fujimura T, Kambayashi Y, Fujisawa Y, Hidaka T and Aiba S: Tumor-associated macrophages: Therapeutic targets for skin cancer. Front Oncol. 8:32018. View Article : Google Scholar : PubMed/NCBI | |
Humphrey RL, Karpetsky TP, Neuwelt EA and Levy CC: Levels of serum ribonuclease as an indicator of renal insufficiency in patients with leukemia. Cancer Res. 37:2015–2022. 1977.PubMed/NCBI | |
Serban M, Cucu C, Mihăilescu E and Micu D: Value of ribonuclease and guanase activity for the diagnosis of leukemias. Rev Roum Med Intern. 11:319–324. 1974.PubMed/NCBI | |
Biomarkers Definitions Working G; Biomarkers Definitions Working Group, : Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 69:89–95. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pistol-Tanase C, Raducan E, Dima SO, Albulescu L, Alina I, Marius P, Cruceru LM, Codorean E, Neagu TM and Popescu I: Assessment of soluble angiogenic markers in pancreatic cancer. Biomarkers Med. 2:447–455. 2008. View Article : Google Scholar | |
FDA-NIH Biomarker Working Group, : BEST (Biomarkers, EndpointS, and other Tools) Resource (Internet). Silver Spring; MA, USA: 2016 | |
Caruntu C, Boda D, Dumitrascu G, Constantin C and Neagu M: Proteomics focusing on immune markers in psoriatic arthritis. Biomarkers Med. 9:513–528. 2015. View Article : Google Scholar | |
Neagu M, Caruntu C, Constantin C, Boda D, Zurac S, Spandidos DA and Tsatsakis AM: Chemically induced skin carcinogenesis: Updates in experimental models. (Review) Oncol Rep. 35:2516–2528. 2016. View Article : Google Scholar | |
Mihai S, Codrici E, Popescu ID, Enciu AM, Rusu E, Zilisteanu D, Albulescu R, Anton G and Tanase C: Proteomic biomarkers panel: New insights in chronic kidney disease. Dis Markers. 2016:31852322016. View Article : Google Scholar : PubMed/NCBI | |
Matei C, Tampa M, Caruntu C, Ion RM, Georgescu SR, Dumitrascu GR, Constantin C and Neagu M: Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res. 47:332014. View Article : Google Scholar : PubMed/NCBI | |
Tanase CP, Albulescu R and Neagu M: Application of 3D hydrogel microarrays in molecular diagnostics: Advantages and limitations. Expert Rev Mol Diagn. 11:461–464. 2011. View Article : Google Scholar : PubMed/NCBI | |
Caruntu C: Catecholamines increase in vitro proliferation of murine B16F10 melanoma cells. Acta Endocrinol (Bucur). 10:545–558. 2014. View Article : Google Scholar | |
Boda D: Cellomics as integrative omics for cancer. Curr Proteomics. 10:237–245. 2013. View Article : Google Scholar | |
Zurac S, Neagu M, Constantin C, Cioplea M, Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett. 11:3354–3360. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ion A, Popa IM, Papagheorghe LM, Lisievici C, Lupu M, Voiculescu V, Caruntu C and Boda D: Proteomic approaches to biomarker discovery in cutaneous T-cell lymphoma. Dis Markers. 2016:96024722016. View Article : Google Scholar : PubMed/NCBI | |
Igreja C, Courinha M, Cachaço AS, Pereira T, Cabeçadas J, Da Silva MG and Dias S: Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica. 92:469–477. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schadendorf D, Matharoo-Ball B, Rees R, Ugurel S and Utikal J: Prognostic biomarkers of cutaneous malignancies - serological, immunohistochemical and proteomic approaches. Curr Cancer Ther Rev. 4:96–104. 2008. View Article : Google Scholar | |
Hassel JC, Meier R, Joller-Jemelka H, Burg G and Dummer R: Serological immunomarkers in cutaneous T-cell lymphoma. Dermatology. 209:296–300. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moshkovskii SA, Sokolova EE, Brattseva EV, Karpova MA, Pyatnitskiy MA, Kubanova AA and Archakov AI: Proteome and cytokine serum profiling to diagnose a mycosis fungoides. Proteomics Clin Appl. 5:432–439. 2011. View Article : Google Scholar : PubMed/NCBI | |
Popescu I, Raducan E, Dinischiotu A and Tanase C: Applications of SELDI-TOF technology in cancer biomarkers discovery. Rom Biotechnol Lett. 15:5654–5667. 2010. | |
Wilcox RA: Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 92:1085–1102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Van Arnam JS, Lim MS and Elenitoba-Johnson KSJ: Novel insights into the pathogenesis of T-cell lymphomas. Blood. 131:2320–2330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, Totoki Y, Chiba K, Sato-Otsubo A, Nagae G, et al: Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 47:1304–1315. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R and Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miller KD: E2100: A phase III trial of paclitaxel versus paclitaxel/bevacizumab for metastatic breast cancer. Clin Breast Cancer. 3:421–422. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lockhart AC, Rothenberg ML, Dupont J, Cooper W, Chevalier P, Sternas L, Buzenet G, Koehler E, Sosman JA, Schwartz LH, et al: Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol. 28:207–214. 2010. View Article : Google Scholar : PubMed/NCBI | |
D'Amato RJ, Loughnan MS, Flynn E and Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 91:4082–4085. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bagot M, Hasan B, Whittaker S, Beylot-Barry M, Knobler R, Shah E, Marreaud S, Morris S, Dalle S, Servitje O, et al: A phase III study of lenalidomide maintenance after debulking therapy in patients with advanced cutaneous T-cell lymphoma; EORTC 21081 (NCT01098656): Results and lessons learned for future trial designs. Eur J Dermatol. 27:286–294. 2017.PubMed/NCBI | |
Neagu M, Constantin C and Zurac S: Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: Experience, role, and limitations. BioMed Res Int. 2013:1079402013. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N and Kerbel RS: Angiogenesis as a therapeutic target. Nature. 438:967–974. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, et al: Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science. 313:1785–1787. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mayerhofer M, Valent P, Sperr WR, Griffin JD and Sillaber C: BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood. 100:3767–3775. 2002. View Article : Google Scholar : PubMed/NCBI | |
Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, et al: Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor. Nat Med. 8:128–135. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kremer M, Sliva K, Klemke CD and Schnierle BS: Cutaneous T-cell lymphoma cells are sensitive to rapamycin. Exp Dermatol. 19:800–805. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marzec M, Liu X, Wysocka M, Rook AH, Odum N and Wasik MA: Simultaneous inhibition of mTOR-containing complex 1 (mTORC1) and MNK induces apoptosis of cutaneous T-cell lymphoma (CTCL) cells. PLoS One. 6:e248492011. View Article : Google Scholar : PubMed/NCBI | |
Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R and Bates SE: Inhibitor of histone deacetylation, depsipeptide, in the treatment of peripheral and cutaneous T-cell lymphoma: A case report. Blood. 98:2865–2868. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J and Anderson KC: The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61:3071–3076. 2001.PubMed/NCBI | |
Shah JJ and Orlowski RZ: Proteasome inhibitors in the treatment of multiple myeloma. Leukemia. 23:1964–1979. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Zain J and O'Connor O: Novel therapeutic agents for cutaneous T-cell lymphoma. J Hematol Oncol. 5:242012. View Article : Google Scholar : PubMed/NCBI | |
Buac D, Shen M, Schmitt S, Kona FR, Deshmukh R, Zhang Z, Neslund-Dudas C, Mitra B and Dou QP: From bortezomib to other inhibitors of the proteasome and beyond. Curr Pharm Des. 19:4025–4038. 2013. View Article : Google Scholar : PubMed/NCBI | |
Orlowski RZ and Kuhn DJ: Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 14:1649–1657. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kozuch PS, Rocha-Lima CM, Dragovich T, Hochster H, O'Neil BH, Atiq OT, Pipas JM, Ryan DP and Lenz HJ: Bortezomib with or without irinotecan in relapsed or refractory colorectal cancer: Results from a randomized phase II study. J Clin Oncol. 26:2320–2326. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morris MJ, Kelly WK, Slovin S, Ryan C, Eicher C, Heller G and Scher HI: A phase II trial of bortezomib and prednisone for castration resistant metastatic prostate cancer. J Urol. 178:2378–2383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schmid P, Kühnhardt D, Kiewe P, Lehenbauer-Dehm S, Schippinger W, Greil R, Lange W, Preiss J, Niederle N, Brossart P, et al: A phase I/II study of bortezomib and capecitabine in patients with metastatic breast cancer previously treated with taxanes and/or anthracyclines. Ann Oncol. 19:871–876. 2008. View Article : Google Scholar : PubMed/NCBI | |
Heider U, Rademacher J, Lamottke B, Mieth M, Moebs M, von Metzler I, Assaf C and Sezer O: Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T-cell lymphoma. Eur J Haematol. 82:440–449. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Yoon DH, Kang HJ, Kim JS, Park SK, Kim HJ, Lee J, Ryoo BY, Ko YH, Huh J, et al: Consortium for improving survival of lymphoma (CISL) investigators: Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: A multicentre, single-arm, phase 2 trial. Eur J Cancer. 48:3223–3231. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zinzani PL, Musuraca G, Tani M, Stefoni V, Marchi E, Fina M, Pellegrini C, Alinari L, Derenzini E, de Vivo A, et al: Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 25:4293–4297. 2007. View Article : Google Scholar : PubMed/NCBI |