Inflammation: A key process in skin tumorigenesis (Review)
- Authors:
- Monica Neagu
- Carolina Constantin
- Constantin Caruntu
- Carmen Dumitru
- Mihaela Surcel
- Sabina Zurac
-
Affiliations: Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania, Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania, Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania - Published online on: November 19, 2018 https://doi.org/10.3892/ol.2018.9735
- Pages: 4068-4084
-
Copyright: © Neagu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Νeagu M: The immune system: A hidden treasure for biomarker discovery in cutaneous melanoma. Adv Clin Chem. 58:89–140. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE, Voiculescu V, et al: Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol. 52:637–655. 2018.PubMed/NCBI | |
Calleja-Agius J, Brincat M and Borg M: Skin connective tissue and ageing. Best Pract Res Clin Obstet Gynaecol. 27:727–740. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S and Voorhees JJ: Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 138:1462–1470. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sollberger G, Strittmatter GE, Grossi S, Garstkiewicz M, Auf dem Keller U, French LE and Beer HD: Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes. J Invest Dermatol. 135:1395–1404. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ortiz ML, Kumar V, Martner A, Mony S, Donthireddy L, Condamine T, Seykora J, Knight SC, Malietzis G, Lee GH, et al: Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4+ T cells. J Exp Med. 212:351–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Awad F, Assrawi E, Louvrier C, Jumeau C, Giurgea I, Amselem S and Karabina SA: Photoaging and skin cancer: Is the inflammasome the missing link? Mech Ageing Dev. 172:131–137. 2018. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG and Coussens LM: Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9:2122007. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Constantin C, Dumitrascu G, Lupu A, Caruntu C, Boda D and Zurac S: Inflammation markers in cutaneous melanoma-edgy biomarkers for prognosis. Discoveries (Craiova). 3:e382015. View Article : Google Scholar | |
Lin WW and Karin M: A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 117:1175–1183. 2007. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Constantin C, Manda G and Margaritescu I: Biomarkers of metastatic melanoma. Biomarkers Med. 3:71–89. 2009. View Article : Google Scholar | |
Mattii M, Lovászi M, Garzorz N, Atenhan A, Quaranta M, Lauffer F, Konstantinow A, Küpper M, Zouboulis CC, Kemeny L, et al: Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. Br J Dermatol. 178:722–730. 2018. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Caruntu C, Constantin C, Boda D, Zurac S, Spandidos DA and Tsatsakis AM: Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep. 35:2516–2528. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martinon F: Dangerous liaisons: Mitochondrial DNA meets the NLRP3 inflammasome. Immunity. 36:313–315. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S and Beer HD: The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol. 17:1140–1145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kostyuk V, Potapovich A, Stancato A, De Luca C, Lulli D, Pastore S and Korkina L: Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One. 7:e444722012. View Article : Google Scholar : PubMed/NCBI | |
Oyewole AO and Birch-Machin MA: Sebum, inflammasomes and the skin: Current concepts and future perspective. Exp Dermatol. 24:651–654. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ahmad I, Muneer KM, Chang ME, Nasr HM, Clay JM, Huang CC and Yusuf N: Ultraviolet radiation-induced downregulation of SERCA2 mediates activation of NLRP3 inflammasome in basal cell carcinoma. Photochem Photobiol. 93:1025–1033. 2017. View Article : Google Scholar : PubMed/NCBI | |
Latz E, Xiao TS and Stutz A: Activation and regulation of the inflammasomes. Nat Rev Immunol. 13:397–411. 2013. View Article : Google Scholar : PubMed/NCBI | |
Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, Lewis JD and Laird DW: Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem. 287:29184–29193. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverényi I, Takeichi T, Balaji R, Lau A, et al: Germline NLRP1 mutations cause skin inflammatory and cancersusceptibility syndromes via inflammasome activation. Cell. 167:187–202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Verma D, Bivik C, Farahani E, Synnerstad I, Fredrikson M, Enerbäck C, Rosdahl I and Söderkvist P: Inflammasome polymorphisms confer susceptibility to sporadic malignant melanoma. Pigment Cell Melanoma Res. 25:506–513. 2012. View Article : Google Scholar : PubMed/NCBI | |
Da Silva WC, Oshiro TM, de Sá DC, Franco DD, Festa Neto C and Pontillo A: Genotyping and differential expression analysis of inflammasome genes in sporadic malignant melanoma reveal novel contribution of CARD8, IL1B and IL18 in melanoma susceptibility and progression. Cancer Genet. 209:474–480. 2016. View Article : Google Scholar : PubMed/NCBI | |
Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, Dinarello CA and Fujita M: Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β. J Biol Chem. 285:6477–6488. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Luo Y, Dunn JH, Norris DA, Dinarello CA and Fujita M: Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol. 133:518–527. 2013. View Article : Google Scholar : PubMed/NCBI | |
Drexler SK, Bonsignore L, Masin M, Tardivel A, Jackstadt R, Hermeking H, Schneider P, Gross O, Tschopp J and Yazdi AS: Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci USA. 109:18384–18389. 2012. View Article : Google Scholar : PubMed/NCBI | |
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI | |
Gonda TA, Tu S and Wang TC: Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 8:2005–2013. 2009. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Constantin C and Tanase C: Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev Mol Diagn. 10:897–919. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nedoszytko B, Sokołowska-Wojdyło M, Ruckemann- Dziurdzińska K, Roszkiewicz J and Nowicki RJ: Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: Atopic dermatitis, psoriasis and skin mastocytosis. Postepy Dermatol Alergol. 31:84–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Justus CR, Leffler N, Ruiz-Echevarria M and Yang LV: In vitro cell migration and invasion assays. J Vis Exp. 1:882014. | |
Kong D, Li Y, Wang Z and Sarkar FH: Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers (Basel). 3:716–729. 2011. View Article : Google Scholar : PubMed/NCBI | |
Plikus MV, Guerrero-Juarez CF, Treffeisen E and Gay DL: Epigenetic control of skin and hair regeneration after wounding. Exp Dermatol. 24:167–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N and Han YP: Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. Am J Pathol. 176:2247–2258. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leopold PL, Vincent J and Wang H: A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol. 22:471–483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Egeblad M, Nakasone ES and Werb Z: Tumors as organs: Complex tissues that interface with the entire organism. Dev Cell. 18:884–901. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim Y and He YY: Ultraviolet radiation-induced non-melanoma skin cancer: Regulation of DNA damage repair and inflammation. Genes Dis. 1:188–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pondicherry A, Martin R, Meredith I, Rolfe J, Emanuel P and Elwood M: The burden of non-melanoma skin cancers in Auckland, New Zealand. Australas J Dermatol. 59:210–213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Avrămoiu I, Petrescu IO, Ciurea ME, Bold A, Siloşi I, ŢânŢu MM, Niculescu M, Anghel Savciu RE and Mogoantă SŞ: Peritumoral inflammatory reaction in non-melanoma skin cancers-histological and immunohistochemical study. Rom J Morphol Embryol. 57:943–950. 2016.PubMed/NCBI | |
Nguyen AH, Detty SQ and Agrawal DK: Clinical implications of high-mobility group box-1 (HMGB1) and the receptor for advanced glycation end-products (RAGE) in cutaneous malignancy: A systematic review. Anticancer Res. 37:1–7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu NL and Liu FT: The expression and function of galectins in skin physiology and pathology. Exp Dermatol. 27:217–226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kapucuoglu N, Basak PY, Bircan S, Sert S and Akkaya VB: Immunohistochemical galectin-3 expression in non-melanoma skin cancers. Pathol Res Pract. 205:97–103. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, Simoni S, Albanesi C and Cavani A: Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol. 45:922–931. 2015. View Article : Google Scholar : PubMed/NCBI | |
Von Schuckmann LA, Law MH, Montgomery GW, Green AC and Van Der Pols JC: Vitamin D pathway gene polymorphisms and keratinocyte cancers: A nested case-control study and meta-analysis. Anticancer Res. 36:2145–2152. 2016.PubMed/NCBI | |
Dusingize JC, Olsen CM, Pandeya NP, Subramaniam P, Thompson BS, Neale RE, Green AC and Whiteman DC; QSkin Study, : Cigarette smoking and the risks of basal cell carcinoma and squamous cell carcinoma. J Invest Dermatol. 137:1700–1708. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary SC, Waseem M, Rana M, Xu H, Kopelovich L, Elmets CA and Athar M: Naproxen inhibits UVB-induced basal cell and squamous cell carcinoma development in Ptch1+/−/SKH-1 hairless mice. Photochem Photobiol. 93:1016–1024. 2017. View Article : Google Scholar : PubMed/NCBI | |
Janda J, Burkett NB, Blohm-Mangone K, Huang V, Curiel-Lewandrowski C, Alberts DS, Petricoin EF III, Calvert VS, Einspahr J, Dong Z, et al: Resatorvid-based pharmacological antagonism of cutaneous TLR4 blocks UV-induced NF-κB and AP-1 signaling in keratinocytes and mouse skin. Photochem Photobiol. 92:816–825. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matei C, Tampa M, Caruntu C, Ion RM, Georgescu SR, Dumitrascu GR, Constantin C and Neagu M: Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res. 47:33–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, et al: From normal skin to squamous cell carcinoma: A quest for novel biomarkers. Dis Markers. 2016:45174922016. View Article : Google Scholar : PubMed/NCBI | |
Voiculescu VM, Caruntu C, Solomon I, Lupu M, Ilie MA, Boda D, Constantin C and Neagu M: Squamous cell carcinoma: Biomarkers and potential therapeutic targets. Human Skin Cancers - Pathways, Mechanisms, Targets and Treatments. Blumenberg M: IntechOpen; London: pp. 135–159. 2018 | |
Paulitschke V, Gerner C, Hofstätter E, Mohr T, Mayer RL, Pehamberger H and Kunstfeld R: Proteome profiling of keratinocytes transforming to malignancy. Electrophoresis. 36:564–576. 2015. View Article : Google Scholar : PubMed/NCBI | |
Farshchian M, Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Kivisaari A, Kallajoki M, Grénman R, Peltonen J, Peltonen S, et al: Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget. 8:45825–45836. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muller HK and Woods GM: Ultraviolet radiation effects on the proteome of skin cells. Adv Exp Med Biol. 990:111–119. 2013. View Article : Google Scholar : PubMed/NCBI | |
López-Camarillo C, Ocampo EA, Casamichana ML, Pérez-Plasencia C, Alvarez-Sánchez E and Marchat LA: Protein kinases and transcription factors activation in response to UV-radiation of skin: Implications for carcinogenesis. Int J Mol Sci. 13:142–172. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bertrand-Vallery V, Boilan E, Ninane N, Demazy C, Friguet B, Toussaint O, Poumay Y and Debacq-Chainiaux F: Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16(INK-4A). Biogerontology. 11:167–181. 2010. View Article : Google Scholar : PubMed/NCBI | |
Föll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nyström A and Kern JS: Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas. Matrix Biol. 66:1–21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guerra L, Odorisio T, Zambruno G and Castiglia D: Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biol. 63:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meier K, Drexler SK, Eberle FC, Lefort K and Yazdi AS: Silencing of ASC in cutaneous squamous cell carcinoma. PLoS One. 11:e01647422016. View Article : Google Scholar : PubMed/NCBI | |
Kirkley KS, Walton KD, Duncan C and Tjalkens RB: Spontaneous development of cutaneous squamous cell carcinoma in mice with cell-specific deletion of inhibitor of κB kinase 2. Comp Med. 67:407–415. 2017.PubMed/NCBI | |
Mohanan S, Horibata S, Anguish LJ, Mukai C, Sams K, McElwee JL, McLean D, Yan A and Coonrod SA: PAD2 overexpression in transgenic mice augments malignancy and tumor-associated inflammation in chemically initiated skin tumors. Cell Tissue Res. 370:275–283. 2017. View Article : Google Scholar : PubMed/NCBI | |
Atmatzidis DH, Lambert WC and Lambert MW: Langerhans cell: Exciting developments in health and disease. J Eur Acad Dermatol Venereol. 31:1817–1824. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu XF and Schuh AC: Cell surface antigen CD109 is a novel member of the α(2) macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 99:1683–1691. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sunagawa M, Mii S, Enomoto A, Kato T, Murakumo Y, Shiraki Y, Asai N, Asai M, Nagino M and Takahashi M: Suppression of skin tumorigenesis in CD109-deficient mice. Oncotarget. 7:82836–82850. 2016. View Article : Google Scholar : PubMed/NCBI | |
Varricchi G, Galdiero MR and Marone G, Granata F, Borriello F and Marone G: Controversial role of mast cells in skin cancers. Exp Dermatol. 26:11–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Latil M, Nassar D, Beck B, Boumahdi S, Wang L, Brisebarre A, Dubois C, Nkusi E, Lenglez S, Checinska A, et al: Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell. 20:191–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dibra D, Mitra A, Newman M, Xia X, Keenan C, Cutrera JJ, Mathis JM, Wang XJ, Myers J and Li S: IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin. Oncotarget. 7:77138–77151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ghita MA, Caruntu C, Rosca AE, Kaleshi H, Caruntu A, Moraru L, Docea AO, Zurac S, Boda D, Neagu M, et al: Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma. Oncol Lett. 11:3019–3024. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tilley C, Deep G and Agarwal R: Chemopreventive opportunities to control basal cell carcinoma: Current perspectives. Mol Carcinog. 54:688–697. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Shi Y, Yan B, Xiao D, Lai W, Pan Y, Jiang Y, Chen L, Mao C, Zhou J, et al: LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget. 7:27280–27294. 2016. View Article : Google Scholar : PubMed/NCBI | |
Larsimont JC, Youssef KK, Sánchez-Danés A, Sukumaran V, Defrance M, Delatte B, Liagre M, Baatsen P, Marine JC, Lippens S, et al: Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell. 17:60–73. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chastkofsky MI, Bie W, Ball-Kell SM, He YY and Tyner AL: Protein tyrosine kinase 6 regulates UVB-induced signaling and tumorigenesis in mouse skin. J Invest Dermatol. 135:2492–2501. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baykan H, Cihan YB and Ozyurt K: Roles of white blood cells and subtypes as inflammatory markers in skin cancer. Asian Pac J Cancer Prev. 16:2303–2306. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lupu M, Caruntu A, Caruntu C, Papagheorghe LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki M, et al: Neuroendocrine factors: The missing link in non melanoma skin cancer (Review). Oncol Rep. 38:1327–1340. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Chahal HS, Wu W, Cho HG, Ransohoff KJ, Dai H, Tang JY, Sarin KY and Han J: Association between genetic variation within vitamin D receptor-DNA binding sites and risk of basal cell carcinoma. Int J Cancer. 140:2085–2091. 2017. View Article : Google Scholar : PubMed/NCBI | |
Κaukinen A, Siiskonen H, Pelkonen J and Harvima IT: Immunoreactivity to CYP24A1, but not vitamin D receptor, is increased in mast cells of keratinocyte skin cancers. Eur J Dermatol. 27:590–598. 2017.PubMed/NCBI | |
Weidenbusch M, Rodler S, Song S, Romoli S, Marschner JA, Kraft F, Holderied A, Kumar S, Mulay SR, Honarpisheh M, et al: Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Biosci Rep. 37:BSR201700992017.doi: 10.1042/BSR20170099. View Article : Google Scholar : PubMed/NCBI | |
Rubina KA, Sysoeva VY, Zagorujko EI, Tsokolaeva ZI, Kurdina MI, Parfyonova YV and Tkachuk VA: Increased expression of uPA, uPAR, and PAI-1 in psoriatic skin and in basal cell carcinomas. Arch Dermatol Res. 309:433–442. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsova EV, Snarskaya ES, Zavalishina LE and Tkachenko SB: Immunohistochemical study of the specific features of expression of matrix metalloproteinases 1, 9 in the photoaged skin, the foci of actinic keratosis and basal cell carcinoma. Arkh Patol. 78:17–22. 2016.(In Russian). View Article : Google Scholar : PubMed/NCBI | |
Papakostas D and Stockfleth E: Topical treatment of basal cell carcinoma with the immune response modifier imiquimod. Future Oncol. 11:2985–2990. 2015. View Article : Google Scholar : PubMed/NCBI | |
Muranushi C, Olsen CM, Green AC and Pandeya N: Can oral nonsteroidal antiinflammatory drugs play a role in the prevention of basal cell carcinoma? A systematic review and metaanalysis. J Am Acad Dermatol. 74:108–119.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 117:451–460. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weiss SA, Han SW, Lui K, Tchack J, Shapiro R, Berman R, Zhong J, Krogsgaard M, Osman I and Darvishian F: Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Hum Pathol. 57:116–125. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zurac S, Negroiu G, Andrei R, Petrescu S, Tebeica T, Petre M, Neagu M, Constantin C, Chitu V, Salavastru C, et al: Inflammatory infiltrate in melanoma with regression as prognostic parameter. Virchows Arch. 463:1272013. | |
Klechevsky E: Functional diversity of human dendritic cells. Adv Exp Med Biol. 850:43–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hargadon KM: Strategies to improve the efficacy of dendritic cell-based immunotherapy for melanoma. Front Immunol. 8:15942017. View Article : Google Scholar : PubMed/NCBI | |
Van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, Van Leeuwen PA, Lougheed SM, Meijer S, Van den Tol MP, Scheper RJ and De Gruijl TD: Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood. 118:2502–2510. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deckers J, Hammad H and Hoste E: Langerhans cells: Sensing the environment in health and disease. Front Immunol. 9:932018. View Article : Google Scholar : PubMed/NCBI | |
Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, et al: Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 29:497–510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S, Leboeuf M and Merad M: CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 16:1060–1068. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hieronymus T, Zenke M, Baek JH and Seré K: The clash of Langerhans cell homeostasis in skin: Should I stay or should I go? Semin Cell Dev Biol. 41:30–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, Seyerl M, Stöckl J, Elbe-Bürger A, Graf D, et al: Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 210:2597–2610. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arwert EN, Hoste E and Watt FM: Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 12:170–180. 2012. View Article : Google Scholar : PubMed/NCBI | |
Baek JH, Birchmeier C, Zenke M and Hieronymus T: The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol. 189:1699–1707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yen JH, Khayrullina T and Ganea D: PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. Blood. 111:260–270. 2008. View Article : Google Scholar : PubMed/NCBI | |
Haanen JB, Baars A, Gomez R, Weder P, Smits M, De Gruijl TD, Von Blomberg BM, Bloemena E, Scheper RJ, Van Ham SM, et al: Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother. 55:451–458. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ladányi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I and Tímár J: Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother. 56:1459–1469. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dai J, El Gazzar M, Li GY, Moorman JP and Yao ZQ: Myeloid-derived suppressor cells: Paradoxical roles in infection and immunity. J Innate Immun. 7:116–126. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Poschke I, Wennerberg E, Pico de Coaña Y, Egyhazi Brage S, Schultz I, Hansson J, Masucci G, Lundqvist A and Kiessling R: Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res. 73:3877–3887. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI | |
Tarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, Sander C, Yin Y, Holtzman M, Johnson J, et al: Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One. 9:e877052014. View Article : Google Scholar : PubMed/NCBI | |
Rudolph BM, Loquai C, Gerwe A, Bacher N, Steinbrink K, Grabbe S and Tuettenberg A: Increased frequencies of CD11b+ CD33+ CD14+ HLA-DRlow myeloid-derived suppressor cells are an early event in melanoma patients. Exp Dermatol. 23:202–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martens A, Zelba H, Garbe C, Pawelec G and Weide B: Monocytic myeloid-derived suppressor cells in advanced melanoma patients: Indirect impact on prognosis through inhibition of tumor-specific T-cell responses? OncoImmunology. 3:e278452014. View Article : Google Scholar : PubMed/NCBI | |
Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, Maurichi A, Cova A, Rigamonti G, Giardino F, et al: Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clin Cancer Res. 18:6485–6496. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, et al: Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 89:311–317. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Görgens A, Giebel B, Schadendorf D and Paschen A: Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer. 133:1653–1663. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ene CD, Anghel AE, Neagu M and Nicolae I: 25-OH Vitamin D and interleukin-8 emerging biomarkers in cutaneous melanoma development and progression. Mediators Inflam. 2015:1–8. 2015. View Article : Google Scholar | |
Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, et al: IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 182:6562–6568. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J and Umansky V: Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer. 136:2352–2360. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhai Z, Liu W, Kaur M, Luo Y, Domenico J, Samson JM, Shellman YG, Norris DA, Dinarello CA, Spritz RA, et al: NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma. Oncogene. 36:3820–3830. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lopes RL, Borges TJ, Araújo JF, Pinho NG, Bergamin LS, Battastini AM, Muraro SP, Souza AP, Zanin RF and Bonorino C: Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype. PLoS One. 9:e1134412014. View Article : Google Scholar : PubMed/NCBI | |
Scali E, Mignogna C, Di Vito A, Presta I, Camastra C, Donato G and Bottoni U: Inflammation and macrophage polarization in cutaneous melanoma: Histopathological and immunohistochemical study. Int J Immunopathol Pharmacol. 29:715–719. 2016. View Article : Google Scholar : PubMed/NCBI | |
Falleni M, Savi F, Tosi D, Agape E, Cerri A, Moneghini L and Bulfamante GP: M1 and M2 macrophages' clinicopathological significance in cutaneous melanoma. Melanoma Res. 27:200–210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bønnelykke-Behrndtz ML, Steiniche T, Damsgaard TE, Georgsen JB, Danielsen A, Bastholt L, Møller HJ, Nørgaard PH and Schmidt H: MelanA-negative spindle-cell associated melanoma, a distinct inflammatory phenotype correlated with dense infiltration of CD163 macrophages and loss of E-cadherin. Melanoma Res. 25:113–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jacquelot N, Pitt JM, Enot DP, Roberti MP, Duong CPM, Rusakiewicz S, Eggermont AM and Zitvogel L: Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. OncoImmunology. 6:e12993032017. View Article : Google Scholar : PubMed/NCBI | |
Hernberg M, Mattila PS, Rissanen M, Hansson J, Aamdal S, Bastholt L, Von der Maase H, Schmidt H, Stierner U and Tarkkanen J: The prognostic role of blood lymphocyte subset distribution in patients with resected high-risk primary or regionally metastatic melanoma. J Immunother. 30:773–779. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C and Kroemer G: Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 71:5601–5605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jacobs JFM, Nierkens S, Figdor CG, de Vries IJM and Adema GJ: Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 13:e32–e42. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA and Markovic SN: Melanoma study group of the Mayo Clinic Cancer Center: Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res. 15:1931–1939. 2009. View Article : Google Scholar : PubMed/NCBI | |
Umansky V and Sevko A: Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol. 22:319–326. 2012. View Article : Google Scholar : PubMed/NCBI | |
Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, et al: Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta. 1845:182–201. 2014.PubMed/NCBI | |
Neagu M, Constantin C and Longo C: Chemokines in the melanoma metastasis biomarkers portrait. J Immunoassay Immunochem. 36:559–566. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Edington HD, Rao UN, Jukic DM, Radfar A, Wang H and Kirkwood JM: Effects of high-dose IFNα2b on regional lymph node metastases of human melanoma: Modulation of STAT5, FOXP3, and IL-17. Clin Cancer Res. 14:8314–8320. 2008. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Constantin C and Zurac S: Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: Experience, role, and limitations. BioMed Res Int. 2013:1079402013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, Easson A, Leong W, Lipa J, McCready D, et al: Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One. 5:e139402010. View Article : Google Scholar : PubMed/NCBI | |
Ηussein MR, Elsers DA, Fadel SA and Omar AE: Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions. J Clin Pathol. 59:316–324. 2006. View Article : Google Scholar : PubMed/NCBI | |
Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP and Thompson JF: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 30:2678–2683. 2012. View Article : Google Scholar : PubMed/NCBI | |
Burton AL, Roach BA, Mays MP, Chen AF, Ginter BA, Vierling AM, Scoggins CR, Martin RC, Stromberg AJ, Hagendoorn L, et al: Prognostic significance of tumor infiltrating lymphocytes in melanoma. Am Surg. 77:188–192. 2011.PubMed/NCBI | |
Kluger HM, Zito CR, Barr ML, Baine MK, Chiang VL, Sznol M, Rimm DL, Chen L and Jilaveanu LB: Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res. 21:3052–3060. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ancuceanu R and Neagu M: Immune based therapy for melanoma. Indian J Med Res. 143:135–144. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ménard C, Ghiringhelli F, Roux S, Chaput N, Mateus C, Grohmann U, Caillat-Zucman S, Zitvogel L and Robert C: Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: Surrogate marker of efficacy of tremelimumab? Clin Cancer Res. 14:5242–5249. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sarff M, Edwards D, Dhungel B, Wegmann KW, Corless C, Weinberg AD and Vetto JT: OX40 (CD134) expression in sentinel lymph nodes correlates with prognostic features of primary melanomas. Am J Surg. 195:621–625. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garg K, Maurer M, Griss J, Brüggen MC, Wolf IH, Wagner C, Willi N, Mertz KD and Wagner SN: Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum Pathol. 54:157–164. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chiou SH, Sheu BC, Chang WC, Huang SC and Hong-Nerng H: Current concepts of tumor-infiltrating lymphocytes in human malignancies. J Reprod Immunol. 67:35–50. 2005. View Article : Google Scholar : PubMed/NCBI | |
Staquicini FI, Tandle A, Libutti SK, Sun J, Zigler M, Bar-Eli M, Aliperti F, Pérez EC, Gershenwald JE, Mariano M, et al: A subset of host B-lymphocytes control melanoma metastasis through a MCAM/MUC18-dependent interaction: Evidence from mice and humans. Cancer Res. 68:8419–8428. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sadozai H, Gruber T, Hunger RE and Schenk M: Recent successes and future directions in immunotherapy of cutaneous melanoma. Front Immunol. 8:16172017. View Article : Google Scholar : PubMed/NCBI | |
Tarazona R, Duran E and Solana R: Natural killer cell recognition of melanoma: New clues for a more effective immunotherapy. Front Immunol. 6:6492016. View Article : Google Scholar : PubMed/NCBI | |
Ballas ZK, Buchta CM, Rosean TR, Heusel JW and Shey MR: Role of NK cell subsets in organ-specific murine melanoma metastasis. PLoS One. 8:e655992013. View Article : Google Scholar : PubMed/NCBI | |
Ali TH, Pisanti S, Ciaglia E, Mortarini R, Anichini A, Garofalo C, Tallerico R, Santinami M, Gulletta E, Ietto C, et al: Enrichment of CD56dimKIR+CD57+ highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat Commun. 5:56392014. View Article : Google Scholar : PubMed/NCBI | |
Nielsen N, Ødum N, Ursø B, Lanier LL and Spee P: Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS One. 7:e319592012. View Article : Google Scholar : PubMed/NCBI | |
Morvan MG and Lanier LL: NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer. 16:7–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F and Garcia-Lora A: HLA and melanoma: Multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother. 58:1507–1515. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baumeister SH, Freeman GJ, Dranoff G and Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI | |
Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, Viaud S, Ryffel B, Yagita H, Kaplanski G, et al: IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71:5393–5399. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Singh AP, Sharma B, Owen LB and Singh RK: CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol. 6:111–116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gras Navarro A, Bjorklund AT and Chekenya M: Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol. 6:2022015. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg J and Huang J: CD8+ T cells and NK cells: Parallel and complementary soldiers of immunotherapy. Curr Opin Chem Eng. 19:9–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Lecea MV, Palomares T, Al Kassam D, Cavia M, Geh JLC, De Llano P, Muñiz P, Armesto D, Martinez-Indart L and Alonso-Varona A: Indoleamine 2,3 dioxygenase as a prognostic and follow-up marker in melanoma. A comparative study with LDH and S100B. J Eur Acad Dermatol Venereol. 31:636–642. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tarhini AA, Lin Y, Yeku O, LaFramboise WA, Ashraf M, Sander C, Lee S and Kirkwood JM: A four-marker signature of TNF-RII, TGF-α, TIMP-1 and CRP is prognostic of worse survival in high-risk surgically resected melanoma. J Transl Med. 12:192014. View Article : Google Scholar : PubMed/NCBI | |
Zurac S, Neagu M, Constantin C, Cioplea M, Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett. 11:3354–3360. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hofmann MA, Kiecker F, Küchler I, Kors C and Trefzer U: Serum TNF-α, B2M and sIL-2R levels are biological correlates of outcome in adjuvant IFN-α2b treatment of patients with melanoma. J Cancer Res Clin Oncol. 137:455–462. 2011. View Article : Google Scholar : PubMed/NCBI | |
Porter GA, Abdalla J, Lu M, Smith S, Montgomery D, Grimm E, Ross MI, Mansfield PF, Gershenwald JE and Lee JE: Significance of plasma cytokine levels in melanoma patients with histologically negative sentinel lymph nodes. Ann Surg Oncol. 8:116–122. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Li B, Li X, Zhao X, Wan L, Lin G, Yu M, Wang J, Jiang X, Feng W, et al: Transmembrane TNF-α promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J Immunol. 192:1320–1331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Polz J, Remke A, Weber S, Schmidt D, Weber-Steffens D, Pietryga-Krieger A, Müller N, Ritter U, Mostböck S and Männel DN: Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity. Immun Inflamm Dis. 2:121–130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Oppenheim JJ: TNF-α: An activator of CD4+FoxP3+TNFR2+ regulatory T cells. Curr Dir Autoimmun. 11:119–134. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM, et al: Final version of the American Joint Committee on cancer staging system for cutaneous melanoma. J Clin Oncol. 19:3635–3648. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, Lazar AJ, Faries MB, Kirkwood JM, McArthur GA, et al: Melanoma staging: Evidence-based changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 67:472–492. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weide B, Richter S, Büttner P, Leiter U, Forschner A, Bauer J, Held L, Eigentler TK, Meier F and Garbe C: Serum S100B, lactate dehydrogenase and brain metastasis are prognostic factors in patients with distant melanoma metastasis and systemic therapy. PLoS One. 8:e816242013. View Article : Google Scholar : PubMed/NCBI | |
Karonidis A, Mantzourani M, Gogas H and Tsoutsos D: Serum S100B levels correlate with stage, N status, mitotic rate and disease outcome in melanoma patients independent to LDH. J BUON. 22:1296–1302. 2017.PubMed/NCBI | |
Von Bauer R, Oikonomou D, Sulaj A, Mohammed S, Hotz-Wagenblatt A, Gröne HJ, Arnold B, Falk C, Luethje D, Erhardt A, et al: CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. J Immunol. 191:369–377. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dumitraşcu G, Constantin C, Manda G, Hristescu S, Mărgaritescu I, Chiriţă D and Neagu M: Serum markers in skin melanoma-preliminary study. Roum Arch Microbiol Immunol. 68:125–135. 2009.PubMed/NCBI | |
Schmidt J, Riechers A, Stoll R, Amann T, Fink F, Spruss T, Gronwald W, König B, Hellerbrand C and Bosserhoff AK: Targeting melanoma metastasis and immunosuppression with a new mode of melanoma inhibitory activity (MIA) protein inhibition. PLoS One. 7:e379412012. View Article : Google Scholar : PubMed/NCBI | |
Findeisen P, Zapatka M, Peccerella T, Matzk H, Neumaier M, Schadendorf D and Ugurel S: Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol. 27:2199–2208. 2009. View Article : Google Scholar : PubMed/NCBI | |
Neagu M and Constantin C: Immune-therapy in cutaneous melanoma-efficacy immune markers. Advancements in Tumor Immunotherapy and Cancer Vaccines. Arnouk H: InTech; Rijeka, Croatia: pp. 83–106. 2012 |