1
|
Liang Z and Xi Y: MicroRNAs mediate
therapeutic and preventive effects of natural agents in breast
cancer. Chin J Nat Med. 14:881–887. 2016.PubMed/NCBI
|
2
|
Chernyi VS, Tarasova PV, Kozlov VV, Saik
OV, Kushlinskii NE and Gulyaeva LF: Search of MicroRNAs regulating
the receptor status of breast cancer in silico and experimental
confirmation of their expression in tumors. Bull Exp Biol Med.
163:655–659. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lü L, Mao X, Shi P, He B, Xu K, Zhang S
and Wang J: MicroRNAs in the prognosis of triple-negative breast
cancer: A systematic review and meta-analysis. Medicine.
96:e70852017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sempere LF, Keto J and Fabbri M: Exosomal
MicroRNAs in breast cancer towards diagnostic and therapeutic
applications. Cancers. 9(pii): E712017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li D, Wang H, Song H, Xu H, Zhao B, Wu C,
Hu J, Wu T, Xie D, Zhao J, et al: The microRNAs miR-200b-3p and
miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and
motility of breast cancer cells. Oncotarget. 8:85276–85289.
2017.PubMed/NCBI
|
6
|
Mjelle R, Sellæg K, Sætrom P, Thommesen L,
Sjursen W and Hofsli E: Identification of metastasis-associated
microRNAs in serum from rectal cancer patients. Oncotarget.
8:90077–90089. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Awasthi R, Rathbone MJ, Hansbro PM, Bebawy
M and Dua K: Therapeutic prospects of microRNAs in cancer treatment
through nanotechnology. Drug Deliv Transl Res. 8:97–110. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang YN, Chen ZH and Chen WC: Novel
circulating microRNAs expression profile in colon cancer: A pilot
study. Eur J Med Res. 22:512017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pajic M, Froio D, Daly S, Doculara L,
Millar E, Graham PH, Drury A, Steinmann A, de Bock CE,
Boulghourjian A, et al: miR-139-5p modulates radiotherapy
resistance in breast cancer by repressing multiple gene networks of
DNA repair and ROS defense. Cancer Res. 78:501–515. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li J, Lai Y, Ma J, Liu Y, Bi J, Zhang L,
Chen L, Yao C, Lv W, Chang G, et al: miR-17-5p suppresses cell
proliferation and invasion by targeting ETV1 in triple-negative
breast cancer. BMC Cancer. 17:7452017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhuang C, Yuan Y, Song T, Wang H, Huang L,
Luo X, He H, Huo L, Zhou H, Wang N, et al: miR-219a-5p inhibits
breast cancer cell migration and epithelial-mesenchymal transition
by targeting myocardin-related transcription factor A. Acta Biochim
Biophys Sin. 49:1112–1121. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2ΔΔCT method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wee ZN, Yatim SM, Kohlabauer VK, Feng M,
Goh JY, Bao Y, Lee PL, Zhang S, Wang PP, Lim E, et al: Corrigendum:
IRAK1 is a therapeutic target that drives breast cancer metastasis
and resistance to paclitaxel. Nat Commun. 6:100542015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu B, Huang Y, Niu X, Tao T, Jiang L, Tong
N, Chen S, Liu N, Zhu W and Chen M: Hsa-miR-146a-5p modulates
androgen-independent prostate cancer cells apoptosis by targeting
ROCK1. Prostate. 75:1896–1903. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yuwen DL, Sheng BB, Liu J, Wenyu W and Shu
YQ: MiR-146a-5p level in serum exosomes predicts therapeutic effect
of cisplatin in non-small cell lung cancer. Eur Rev Med Pharmacol
Sci. 21:2650–2658. 2017.PubMed/NCBI
|
16
|
Min SK, Jung SY, Kang HK, Park SA, Lee JH,
Kim MJ and Min BM: Functional diversity of miR-146a-5p and TRAF6 in
normal and oral cancer cells. Int J Oncol. 51:1541–1552. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang X, Dang Y, Li P, Rong M and Chen G:
Expression of IRAK1 in lung cancer tissues and its
clinicopathological significance: A microarray study. Int J Clin
Exp Pathol. 7:8096–8104. 2014.PubMed/NCBI
|
18
|
Ye ZH, Gao L, Wen DY, He Y, Pang YY and
Chen G: Diagnostic and prognostic roles of IRAK1 in hepatocellular
carcinoma tissues: An analysis of immunohistochemistry and
RNA-sequencing data from the cancer genome atlas. Onco Targets
Ther. 10:1711–1723. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Y, Wang Y, Duan X, Wang Y and Zhang
Z: Interleukin-1 receptor-associated kinase 1 correlates with
metastasis and invasion in endometrial carcinoma. J Cell Biochem.
119:2545–2555. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chou CK, Chi SY, Huang CH, Chou FF, Huang
CC, Liu RT and Kang HY: IRAK1, a target of miR-146b, reduces
cell aggressiveness of human papillary thyroid carcinoma. J Clin
Endocrinol Metab. 101:4357–4366. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wee ZN, Yatim SM, Kohlbauer VK, Feng M,
Goh JY, Bao Y, Lee PL, Zhang S, Wang PP, Lim E, et al: IRAK1 is a
therapeutic target that drives breast cancer metastasis and
resistance to paclitaxel. Nat Commun. 6:87462015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Si C, Yu Q and Yao Y: Effect of
miR-146a-5p on proliferation and metastasis of triple-negative
breast cancer via regulation of SOX5. Exp Ther Med. 15:4515–4521.
2018.PubMed/NCBI
|