1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jung KW, Won YJ, Kong HJ, Oh CM, Cho H,
Lee DH and Lee KH: Cancer statistics in Korea: Incidence,
mortality, survival, and prevalence in 2012. Cancer Res Treat.
47:127–141. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang D, Rai B, Qi F, Liu T, Wang J, Wang X
and Ma B: Influence of the Twist gene on the invasion and
metastasis of colon cancer. Oncol Rep. 39:31–44. 2018.PubMed/NCBI
|
4
|
Duan L, Deng L, Wang D, Ma S, Li C and
Zhao D: Treatment mechanism of matrine in combination with
irinotecan for colon cancer. Oncol Lett. 14:2300–2304. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Li K, Guo J, Wu Y, Jin D, Jiang H, Liu C
and Qin C: Suppression of YAP by DDP disrupts colon tumor
progression. Oncol Rep. 39:2114–2126. 2018.PubMed/NCBI
|
6
|
De Roock W, De Vriendt V, Normanno N,
Ciardiello F and Tejpar S: KRAS, BRAF, PIK3CA, and PTEN mutations:
Implications for targeted therapies in metastatic colorectal
cancer. Lancet Oncol. 12:594–603. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Moriarity A, O'Sullivan J, Kennedy J,
Mehigan B and McCormick P: Current targeted therapies in the
treatment of advanced colorectal cancer: A review. Ther Adv Med
Oncol. 8:276–293. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hagan S, Orr MC and Doyle B: Targeted
therapies in colorectal cancer-an integrative view by PPPM. EPMA J.
4:32013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Heinemann V, Douillard JY, Ducreux M and
Peeters M: Targeted therapy in metastatic colorectal cancer-an
example of personalized medicine in action. Cancer Treat Rev.
39:592–601. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hwang TJ, Carpenter D, Lauffenburger JC,
Wang B, Franklin JM and Kesselheim AS: Failure of investigational
drugs in late-stage clinical development and publication of trial
results. JAMA Intern Med. 176:1826–1833. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hay M, Thomas DW, Craighead JL, Economides
C and Rosenthal J: Clinical development success rates for
investigational drugs. Nat Biotechnol. 32:40–51. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sun Y: Tumor microenvironment and cancer
therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fang H and Declerck YA: Targeting the
tumor microenvironment: From understanding pathways to effective
clinical trials. Cancer Res. 73:4965–4977. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi
Y, Hu G and Sun Y: New horizons in tumor microenvironment biology:
Challenges and opportunities. BMC Med. 13:452015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Peddareddigari VG, Wang D and Dubois RN:
The Tumor microenvironment in colorectal carcinogenesis. Cancer
Microenviron. 3:149–166. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou W, Xu G, Wang Y, Xu Z, Liu X, Xu X,
Ren G and Tian K: Oxidative stress induced autophagy in cancer
associated fibroblast enhances proliferation and metabolism of
colorectal cancer cells. Cell Cycle. 16:73–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
O'Toole A, Michielsen AJ, Nolan B, Tosetto
M, Sheahan K, Mulcahy HE, Winter DC, Hyland JM, O'Connell PR,
Fennelly D, et al: Tumour microenvironment of both early- and
late-stage colorectal cancer is equally immunosuppressive. Br J
Cancer. 111:927–932. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jacobs J, Smits E, Lardon F, Pauwels P and
Deschoolmeester V: Immune checkpoint modulation in colorectal
cancer: What's new and what to expect. J Immunol Res.
2015:1580382015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Colangelo T, Polcaro G, Muccillo L,
D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino
L and Colantuoni V: Friend or foe?: The tumour microenvironment
dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer.
1867:1–18. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cammarota R, Bertolini V, Pennesi G, Bucci
EO, Gottardi O, Garlanda C, Laghi L, Barberis MC, Sessa F, Noonan
DM and Albini A: The tumor microenvironment of colorectal cancer:
Stromal TLR-4 expression as a potential prognostic marker. J Transl
Med. 8:1122010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Marsh T, Pietras K and McAllister SS:
Fibroblasts as architects of cancer pathogenesis. Biochim Biophys
Acta. 1832:1070–1078. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kalluri R: The biology and function of
fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kalluri R and Zeisberg M: Fibroblasts in
cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lotti F, Jarrar AM, Pai RK, Hitomi M,
Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A,
et al: Chemotherapy activates cancer-associated fibroblasts to
maintain colorectal cancer-initiating cells by IL-17A. J Exp Med.
210:2851–2872. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ostman A and Augsten M: Cancer-associated
fibroblasts and tumor growth-bystanders turning into key players.
Curr Opin Genet Dev. 19:67–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Iacopino F, Angelucci C and Sica G:
Interactions between normal human fibroblasts and human prostate
cancer cells in a co-culture system. Anticancer Res. 32:1579–1588.
2012.PubMed/NCBI
|
27
|
Tao L, Huang G, Song H, Chen Y and Chen L:
Cancer associated fibroblasts: An essential role in the tumor
microenvironment. Oncol Lett. 14:2611–2620. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shiga K, Hara M, Nagasaki T, Sato T,
Takahashi H and Takeyama H: Cancer-associated fibroblasts: Their
characteristics and their roles in tumor growth. Cancers (Basel).
7:2443–2458. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zabransky DJ, Yankasakas CL, Cochran RL,
Wong HY, Croessmann S, Chu D, Kavuri SM, Red Brewer M, Rosen DM,
Dalton WB, et al: HER2 missense mutations have distinct effects on
oncogenic signaling and migration. Proc Natl Acad Sci USA.
112:E6205–E6214. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hwang RF, Moore T, Arumugam T,
Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB and Logsdon CD:
Cancer-associated stromal fibroblasts promote pancreatic tumor
progression. Cancer Res. 68:918–926. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liao D, Luo Y, Markowitz D, Xiang R and
Reisfeld RA: Cancer associated fibroblasts promote tumor growth and
metastasis by modulating the tumor immune microenvironment in a 4T1
murine breast cancer model. PLoS One. 4:e79652009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cheng HH, Chu LY, Chiang LY, Chen HL, Kuo
CC and Wu KK: Inhibition of cancer cell epithelial mesenchymal
transition by normal fibroblasts via production of
5-methoxytryptophan. Oncotarget. 7:31243–31256. 2016.PubMed/NCBI
|
33
|
de Toledo M, Anguille C, Roger L, Roux P
and Gadea G: Cooperative anti-invasive effect of Cdc42/Rac1
activation and ROCK inhibition in SW620 colorectal cancer cells
with elevated blebbing activity. PLoS One. 7:e483442012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Majety M, Pradel LP, Gies M and Ries CH:
Fibroblast influence survival and therapeutic response in a 3d
Co-culture model. PLoS One. 10:e01279482015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yamada T, Matsumoto K, Wang W, Li Q,
Nishioka Y, Sekido Y, Sone S and Yano S: Hepatocyte growth factor
reduces susceptibility to an irreversible epidermal growth factor
receptor inhibitor in EGFR-T790M mutant lung cancer. Clin Cancer
Res. 16:174–183. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Villeneueve PJ and Sundaresan RS: Surgical
management of colorectal lung metastasis. Clin Colon Rectal Surg.
22:233–241. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nesseris I, Tsamakis C, Gregoriou S,
Ditsos I, Christofidou E and Rigopoulos D: Cutaneous metastasis of
colon adenocarcinoma: Case report and review of the literature. An
Bras Dermatol. 88:(6 Suppl 1). S56–S58. 2013. View Article : Google Scholar
|
38
|
Liu Y, Zhang F, Zhang XF, Qi LS, Yang L,
Guo H and Zhang N: Expression of nucleophosmin/NPM1 correlates with
migration and invasiveness of colon cancer cells. J Biomed Sci.
19:532012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mouradov D, Sloggett C, Jorissen RN, Love
CG, Li S, Burgess AW, Arango D, Strausberg RL, Buchanan D, Wormald
S, et al: Colorectal cancer cell lines are representative models of
the main molecular subtypes of primary cancer. Cancer Res.
74:3238–3247. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Labi V and Erlacher M: How cell death
shapes cancer. Cell Death Dis. 6:e16752015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wong RS: Apoptosis in cancer: From
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Trédan O, Galmarini CM, Patel K and
Tannock IF: Drug Resistance and the solid tumor microenvironment. J
Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Segditsas S and Tomlinson I: Colorectal
cancer and genetic alterations in the Wnt pathway. Oncogene.
25:7531–7537. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY,
Hong J, Maeng PJ, Kim KR and Kang D: Quantitative proteomic
analysis of 2D and 3D cultured colorectal cancer cells: Profiling
of tankyrase inhibitor xav939-induced proteome. Sci Rep.
8:132552018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Pagliara V, Saide A, Mitidieri E,
d'Emmanuele di Villa Bianca R, Sorrentino R, Russo G and Russo A:
5-FU targets rpL3 to induce mitochondrial apoptosis via
cystathionine-β-synthase in colon cancer cells lacking p53.
Oncotarget. 7:50333–50348. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Fuchs C, Mitchell EP and Hoff PM:
Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev.
32:491–503. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Weinländer G, Kornek G, Raderer M, Hejna
M, Tetzner C and Scheithauer W: Treatment of advanced colorectal
cancer with doxorubicin combined with two potential
multidrug-resistance-reversing agents: High-dose oral tamoxifen and
dexverapamil. J Cancer Res Clin Oncol. 123:452–455. 1997.
View Article : Google Scholar : PubMed/NCBI
|