1
|
Yun S, Vincelette ND, Abraham I, Robertson
KD, Fernandez-Zapico ME and Patnaik MM: Targeting epigenetic
pathways in acute myeloid leukemia and myelodysplastic syndrome: A
systematic review of hypomethylating agents trials. Clin
Epigenetics. 8:682016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Unnikrishnan A, Papaemmanuil E, Beck D,
Deshpande NP, Verma A, Kumari A, Woll PS, Richards LA, Knezevic K,
Chandrakanthan V, et al: Integrative genomics identifies the
molecular basis of resistance to azacitidine therapy in
myelodysplastic syndromes. Cell Rep. 20:572–585. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cheng JX, Chen L, Li Y, Cloe A, Yue M, Wei
J, Watanabe KA, Shammo JM, Anastasi J, Shen QJ, et al: RNA cytosine
methylation and methyltransferases mediate chromatin organization
and 5-azacytidine response and resistance in leukaemia. Nat Commun.
9:11632018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vidal V, Robert G, Goursaud L, Durand L,
Ginet C, Karsenti JM, Luciano F, Gastaud L, Garnier G, Braun T, et
al: BCL2L10 positive cells in bone marrow are an independent
prognostic factor of azacitidine outcome in myelodysplastic
syndrome and acute myeloid leukemia. Oncotarget. 8:47103–47109.
2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Miltiades P, Lamprianidou E,
Vassilakopoulos TP, Papageorgiou SG, Galanopoulos AG, Kontos CK,
Adamopoulos PG, Nakou E, Vakalopoulou S, Garypidou V, et al: The
Stat3/5 signaling biosignature in hematopoietic stem/progenitor
cells predicts response and outcome in myelodysplastic syndrome
patients treated with azacitidine. Clin Cancer Res. 22:1958–1968.
2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Daver N, Boddu P, Garcia-Manero G, Yadav
SS, Sharma P, Allison J and Kantarjian H: Hypomethylating agents in
combination with immune checkpoint inhibitors in acute myeloid
leukemia and myelodysplastic syndromes. Leukemia. 32:1094–1105.
2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wolff F, Leisch M, Greil R, Risch A and
Pleyer L: The double-edged sword of (re)expression of genes by
hypomethylating agents: From viral mimicry to exploitation as
priming agents for targeted immune checkpoint modulation. Cell
Commun Signal. 15:132017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Granier C, De Guillebon E, Blanc C,
Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S and
Tartour E: Mechanisms of action and rational for the use of
checkpoint inhibitors in cancer. ESMO Open. 2:e0002132017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu HB, Urbanavicius D, Tan P, Spencer A
and Dear AE: Mechanisms and potential molecular markers of early
response to combination epigenetic therapy in patients with myeloid
malignancies. Int J Oncol. 45:1742–1748. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lübbert M, Ihorst G, Sander PN, Bogatyreva
L, Becker H, Wijermans PW, Suciu S, Bissé E and Claus R: Elevated
fetal haemoglobin is a predictor of better outcome in MDS/AML
patients receiving 5-aza-2′-deoxycytidine (Decitabine). Br J
Haematol. 176:609–617. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou L, Ruvolo VR, McQueen T, Chen W,
Samudio IJ, Conneely O, Konopleva M and Andreeff M: HDAC inhibition
by SNDX-275 (Entinostat) restores expression of silenced
leukemia-associated transcription factors Nur77 and Nor1 and of key
pro-apoptotic proteins in AML. Leukemia. 27:1358–1368. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Dear AE, Liu HB, Mayes PA and Perlmutter
P: Conformational analogues of oxamflatin as histone deacetylase
inhibitors. Org Biomol Chem. 4:3778–3784. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tan P, Wei A, Mithraprabhu S, Cummings N,
Liu HB, Perugini M, Reed K, Avery S, Patil S, Walker P, et al: Dual
epigenetic targeting with panobinostat and azacitidine in acute
myeloid leukemia and high-risk myelodysplastic syndrome. Blood
Cancer J. 4:e1702014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Cheson BD, Greenberg PL, Bennett JM,
Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Beran M, de Witte TM,
Stone RM, et al: Clinical application and proposal for modification
of the International Working Group (IWG) response criteria in
myelodysplasia. Blood. 108:419–425. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dail M, Yang L, Green C, Ma C, Robert A,
Kadel EE, Koeppen H, Adamkewicz J, Byon J, Woodard J, et al:
Distinct patterns of PD-L1 and PD-L2 expression by tumor and
non-tumor cells in patients with MM, MDS and AML. Blood.
128:13402016.
|
17
|
Coats T, Smith AE, Mourikis TP, Irish JM,
Kordasti S and Mufti GJ: Mass cytometry reveals PD1 upregulation is
an early step in MDS disease progression. Blood. 128:42962016.
|
18
|
Yang H, Bueso-Ramos C, DiNardo C, Estecio
MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, et al:
Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic
syndromes is enhanced by treatment with hypomethylating agents.
Leukemia. 28:1280–1288. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Azuma T, Yao S, Zhu G, Flies AS, Flies SJ
and Chen L: B7-H1 is a ubiquitous antiapoptotic receptor on cancer
cells. Blood. 111:3635–3643. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ball B, Zeidan A, Gore SD and Prebet T:
Hypomethylating agent combination strategies in myelodysplastic
syndromes: Hopes and shortcomings. Leuk Lymphoma. 58:1022–1036.
2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Clark CA, Gupta HB, Sareddy G, Pandeswara
S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy K,
et al: Tumor-intrinsic PD-L1 signals regulate cell growth,
pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer
Res. 76:6964–6974. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lainey E, Wolfromm A, Marie N, Enot D,
Scoazec M, Bouteloup C, Leroy C, Micol JB, De Botton S, Galluzzi L,
et al: Azacytidine and erlotinib exert synergistic effects against
acute myeloid leukemia. Oncogene. 32:4331–4342. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maiso P, Colado E, Enrique MO, Garayoa M,
Atadja P, Pandiella A and San Miguel JF: Panobinostat (LBH589) a
promising new partner for combination with doxorubicin in acute
myeloid leukemia. Blood. 112:16382008.PubMed/NCBI
|
24
|
Chiappinelli KB, Strissel PL, Desrichard
A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et
al: Inhibiting DNA methylation causes an interferon response in
cancer via dsRNA including endogenous retroviruses. Cell.
162:974–986. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Roulois D, Loo Yau H, Singhania R, Wang Y,
Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al:
DNA-Demethylating agents target colorectal cancer cells by inducing
viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Dear AE: Epigenetic modulators and the new
immunotherapies. N Engl J Med. 374:684–686. 2016. View Article : Google Scholar : PubMed/NCBI
|