Anaplastic lymphoma kinase fusions: Roles in cancer and therapeutic perspectives (Review)
- Authors:
- Zhifa Cao
- Qian Gao
- Meixian Fu
- Nan Ni
- Yuting Pei
- Wen‑Bin Ou
-
Affiliations: Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China, Emergency Department, Tianjin Fourth Central Hospital, Fourth Central Hospital Affiliated with Nankai University, Tianjin 300140, P.R. China - Published online on: December 20, 2018 https://doi.org/10.3892/ol.2018.9856
- Pages: 2020-2030
This article is mentioned in:
Abstract
Yao S, Cheng M, Zhang Q, Wasik M, Kelsh R and Winkler C: Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One. 8:e637572013. View Article : Google Scholar : PubMed/NCBI | |
Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL and Look AT: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 263:1281–1284. 1994. View Article : Google Scholar : PubMed/NCBI | |
Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT and Saltman DL: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 267:316–317. 1995. View Article : Google Scholar : PubMed/NCBI | |
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, et al: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 448:561–566. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mariño-Enríquez A and Dal Cin P: ALK as a paradigm of oncogenic promiscuity: Different mechanisms of activation and different fusion partners drive tumors of different lineages. Cancer Genet. 206:357–373. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ninomiya H, Kato M, Sanada M, Takeuchi K, Inamura K, Motoi N, Nagano H, Nomura K, Sakao Y, Okumura S, et al: Allelotypes of lung adenocarcinomas featuring ALK fusion demonstrate fewer onco- and suppressor gene changes. BMC Cancer. 13:82013. View Article : Google Scholar : PubMed/NCBI | |
Bunting SF and Nussenzweig A: End-joining, translocations and cancer. Nat Rev Cancer. 13:443–454. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT and Engelman JA: ALK in lung cancer: Past, present, and future. J Clin Oncol. 31:1105–1111. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cui S, Zhang W, Xiong L, Pan F, Niu Y, Chu T, Wang H, Zhao Y and Jiang L: Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget. 8:2771–2780. 2017.PubMed/NCBI | |
Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, Ilouze M, Dvir A, Boyle T, Wynes M, Miller VA, Lipson D, Palmer GA, et al: Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist. 20:316–322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hofman P, Ilie M, Hofman V, Roux S, Valent A, Bernheim A, Alifano M, Leroy-Ladurie F, Vaylet F, Rouquette I, et al: Immunohistochemistry to identify EGFR mutations or ALK rearrangements in patients with lung adenocarcinoma. Ann Oncol. 23:1738–1743. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li T, Maus MK, Desai SJ, Beckett LA, Stephens C, Huang E, Hsiang J, Zeger G, Danenberg KD, Astrow SH and Gandara DR: Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays. J Thorac Oncol. 9:18–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jaffe ES, Harris NL, Stein H and Vardiman JW: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press. 2001. | |
Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium, ; et al: Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol. 32:3059–3068. 2014. View Article : Google Scholar : PubMed/NCBI | |
Medeiros LJ and Elenitobajohnson KS: Anaplastic large cell lymphoma. Am J Clin Pathol. 127:707–722. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gustafson S, Medeiros LJ, Kalhor N and Buesoramos CE: Anaplastic large cell lymphoma: Another entity in the differential diagnosis of small round blue cell tumors. Ann Diagn Pathol. 13:413–427. 2009. View Article : Google Scholar : PubMed/NCBI | |
Damm-Welk C, Pillon M, Woessmann W and Mussolin L: Prognostic factors in paediatric anaplastic large cell lymphoma: Role of ALK. Front Biosci (Schol Ed). 7:205–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, Sanchez NS, Zeng J, Shufean MA, Shaw KR, et al: ALK: A tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 3:a0011152017. View Article : Google Scholar : PubMed/NCBI | |
Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, Rimsza L, Pileri SA, Chhanabhai M, Gascoyne RD, et al: ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: Report from the International peripheral T-cell lymphoma project. Blood. 111:5496–5504. 2008. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res. 68:68–94. 2013. View Article : Google Scholar : PubMed/NCBI | |
Delsol G, Lamant L, Mariamé B, Pulford K, Dastugue N, Brousset P, Rigal-Huguet F, al Saati T, Cerretti DP, Morris SW and Mason DY: A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood. 89:1483–1490. 1997.PubMed/NCBI | |
Laurent C, Do C, Gascoyne RD, Lamant L, Ysebaert L, Laurent G, Delsol G and Brousset P: Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: A rare clinicopathologic entity with poor prognosis. J Clin Oncol. 27:4211–4216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gascoyne RD, Lamant L, Martin-Subero JI, Lestou VS, Harris NL, Müller-Hermelink HK, Seymour JF, Campbell LJ, Horsman DE, Auvigne I, et al: ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: Report of 6 cases. Blood. 102:2568–2573. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Roosbroeck K, Cools J, Dierickx D, Thomas J, Vandenberghe P, Stul M, Delabie J, De Wolf-Peeters C, Marynen P and Wlodarska I: ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 95:509–513. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bedwell C, Rowe D, Moulton D, Jones G, Bown N and Bacon CM: Cytogenetically complex SEC31A-ALK fusions are recurrent in ALK-positive large B-cell lymphomas. Haematologica. 96:343–346. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K, Soda M, Togashi Y, Ota Y, Sekiguchi Y, Hatano S, Asaka R, Noguchi M and Mano H: Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica. 96:464–467. 2011. View Article : Google Scholar : PubMed/NCBI | |
D'Amore ES, Visco C, Menin A, Famengo B, Bonvini P and Lazzari E: STAT3 pathway is activated in ALK-positive large B-cell lymphoma carrying SQSTM1-ALK rearrangement and provides a possible therapeutic target. Am J Surg Pathol. 37:780–786. 2013. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR, D'Amico TA, Demmy TL, Ganti AK, Govindan R, et al: Non-small cell lung cancer. J Natl Compr Canc Netw. 10:1236–1271. 2012. View Article : Google Scholar : PubMed/NCBI | |
Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, Choi HG, Kim J, Chiang D, Thomas R, et al: EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 14:4275–4283. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rodig SJ, Mino-Kenudson M, Dacic S, Yeap BY, Shaw A, Barletta JA, Stubbs H, Law K, Lindeman N, Mark E, et al: Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 15:5216–5223. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S, McDermott U, et al: Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 27:4247–4253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li Y, Yang T, Wei S, Wang J, Wang M, Wang Y, Zhou Q, Liu H and Chen J: Clinical significance of EML4-ALK fusion gene and association with EGFR and KRAS gene mutations in 208 Chinese patients with non-small cell lung cancer. PLoS One. 8:e520932013. View Article : Google Scholar : PubMed/NCBI | |
Shaozhang Z, Xiaomei L, Aiping Z, Jianbo H, Xiangqun S and Qitao Y: Detection of EML4-ALK fusion genes in non-small cell lung cancer patients with clinical features associated with EGFR mutations. Genes Chromosomes Cancer. 51:925–932. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang S, Yang X, Yang J, Zhou Q, Yin L, An S, Lin J, Chen S, Xie Z, et al: Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 9:1882010. View Article : Google Scholar : PubMed/NCBI | |
Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC, Ho KK, Au JS, Chung LP and Pik Wong M: University of Hong Kong Lung Cancer Study Group: The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 115:1723–1733. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Ma J, Lyu X, Liu H, Wei B, Zhao J, Fu S, Ding L and Zhang J: Non-small cell lung cancer with EML4-ALK translocation in Chinese male never-smokers is characterized with early-onset. BMC Cancer. 14:8342014. View Article : Google Scholar : PubMed/NCBI | |
Ou SH, Bartlett CH, Mino-Kenudson M, Cui J and Iafrate AJ: Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: A success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist. 17:1351–1375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, Takada S, Ueno T, Yamashita Y, Satoh Y, et al: KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 15:3143–3149. 2009. View Article : Google Scholar : PubMed/NCBI | |
Togashi Y, Soda M, Sakata S, Sugawara E, Hatano S, Asaka R, Nakajima T, Mano H and Takeuchi K: KLC1-ALK: A novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One. 7:e313232012. View Article : Google Scholar : PubMed/NCBI | |
Nishino M, Klepeis VE, Yeap BY, Bergethon K, Morales-Oyarvide V, Dias-Santagata D, Yagi Y, Mark EJ, Iafrate AJ and Mino-Kenudson M: Histologic and cytomorphologic features of ALK-rearranged lung adenocarcinomas. Mod Pathol. 25:1462–1472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee JK, Kim TM, Koh Y, Lee SH, Kim DW, Jeon YK, Chung DH, Yang SC, Kim YT, Kim YW, et al: Differential sensitivities to tyrosine kinase inhibitors in NSCLC harboring EGFR mutation and ALK translocation. Lung Cancer. 77:460–463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang X, Su J, Chen H, Tian H, Huang Y, Xu C and Wu YL: Concomitant EGFR mutation and EML4-ALK gene fusion in non-small cell lung cancer. J Clin Oncol. 29 Suppl 15:S10517. 2011. View Article : Google Scholar | |
Popat S, Vieira de Araújo A, Min T, Swansbury J, Dainton M, Wotherspoon A, Lim E, Nicholson AG and O'Brien ME: Lung adenocarcinoma with concurrent exon 19 EGFR mutation and ALK rearrangement responding to erlotinib. J Thorac Oncol. 6:1962–1963. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kris MG, Johnson BE, Kwiatkowski DJ, Iafrate AJ, Wistuba II, Aronson SL, Engelman JA, Shyr Y, Khuri FR, Rudin CM, et al: Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI's lung cancer mutation consortium (LCMC). J Clin Oncol. 29:CRA75062011. View Article : Google Scholar | |
Leuschner I: Inflammatory myofibroblastic tumor. Pathologe. 31:106–108. 2010.(In German). View Article : Google Scholar : PubMed/NCBI | |
Coffin CM, Watterson J, Priest JR and Dehner LP: Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 19:859–872. 1995. View Article : Google Scholar : PubMed/NCBI | |
Coffin CM, Hornick JL and Fletcher CD: Inflammatory myofibroblastic tumor: Comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 31:509–520. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sokai A, Enaka M, Sokai R, Mori S, Mori S, Gunji M, Fujino M and Ito M: Pulmonary inflammatory myofibroblastic tumor harboring EML4-ALK fusion gene. Jpn J Clin Oncol. 44:93–96. 2014. View Article : Google Scholar : PubMed/NCBI | |
Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T and Perlman EJ: Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59:2776–2780. 1999.PubMed/NCBI | |
Chun YS, Wang L, Nascimento AG, Moir CR and Rodeberg DA: Pediatric inflammatory myofibroblastic tumor: Anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr Blood Cancer. 45:796–801. 2005. View Article : Google Scholar : PubMed/NCBI | |
Busam KJ, Kutzner H, Cerroni L and Wiesner T: Clinical and pathologic findings of Spitz nevi and atypical Spitz tumors with ALK fusions. Am J Surg Pathol. 38:925–933. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, Yeh I, Lipson D, Otto G, Brennan K, Murali R, et al: Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 5:31162014. View Article : Google Scholar : PubMed/NCBI | |
Yeh I, de la Fouchardiere A, Pissaloux D, Mully TW, Garrido MC, Vemula SS, Busam KJ, LeBoit PE, McCalmont TH and Bastian BC: Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am J Surg Pathol. 39:581–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Seo AN, Yoon G and Ro JY: Clinicopathologic and molecular pathology of collecting duct carcinoma and related renal cell carcinomas. Adv Anat Pathol. 24:65–77. 2017.PubMed/NCBI | |
Stöhr CG, Amann K and Hartmann A: Histopathologie des Nierenzellkarzinoms. Der Urologe. 52:942–948. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sukov WR, Hodge JC, Lohse CM, Akre MK, Leibovich BC, Thompson RH and Cheville JC: ALK alterations in adult renal cell carcinoma: Frequency, clinicopathologic features and outcome in a large series of consecutively treated patients. Mod Pathol. 25:1516–1525. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mariño-Enríquez A, Ou WB, Weldon CB, Fletcher JA and Pérez-Atayde AR: ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer. 50:146–153. 2011. View Article : Google Scholar : PubMed/NCBI | |
Debelenko LV, Raimondi SC, Daw N, Shivakumar BR, Huang D, Nelson M and Bridge JA: Renal cell carcinoma with novel VCL-ALK fusion: New representative of ALK-associated tumor spectrum. Mod Pathol. 24:430–442. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xing M: Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–199. 2013. View Article : Google Scholar : PubMed/NCBI | |
Smallridge RC and Copland JA: Anaplastic thyroid carcinoma: Pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol). 22:486–497. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F, Gandhi M, Carty SE, Hodak SP, Luo J, et al: Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci USA. 111:4233–4238. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baudin E and Schlumberger M: New therapeutic approaches for metastatic thyroid carcinoma. Lancet Oncol. 8:148–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chou A, Fraser S, Toon CW, Clarkson A, Sioson L, Farzin M, Cussigh C, Aniss A, O'Neill C, Watson N, et al: A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol. 39:652–659. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rassouli FB, Matin MM and Saeinasab M: Cancer stem cells in human digestive tract malignancies. Tumor Biol. 37:7–21. 2016. View Article : Google Scholar | |
Jazii FR, Najafi Z, Malekzadeh R, Conrads TP, Ziaee AA, Abnet C, Yazdznbod M, Karkhane AA and Salekdeh GH: Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol. 14:7104–7112. 2006. View Article : Google Scholar | |
Aisner DL, Nguyen TT, Paskulin DD, Le AT, Haney J, Schulte N, Chionh F, Hardingham J, Mariadason J, Tebbutt N, et al: ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res. 12:111–118. 2014. View Article : Google Scholar : PubMed/NCBI | |
Amatu A, Somaschini A, Cerea G, Bosotti R, Valtorta E, Buonandi P, Marrapese G, Veronese S, Luo D, Hornby Z, et al: Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer. Br J Cancer. 113:1730–1734. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ying J, Lin C, Wu J, Guo L, Qiu T, Ling Y, Shan L, Zhou H, Zhao D, Wang J, et al: Anaplastic lymphoma kinase rearrangement in digestive tract cancer: Implication for targeted therapy in Chinese population. PLoS One. 10:e01447312015. View Article : Google Scholar : PubMed/NCBI | |
Lin E, Li L, Guan Y, Soriano R, Rivers CS, Mohan S, Pandita A, Tang J and Modrusan Z: Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res. 7:1466–1476. 2009. View Article : Google Scholar : PubMed/NCBI | |
Röttgers S, Gombert M, Teigler-Schlegel A, Busch K, Gamerdinger U, Slany R, Harbott J and Borkhardt A: ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia. 24:1197–1200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ren H, Tan ZP, Zhu X, Crosby K, Haack H, Ren JM, Beausoleil S, Moritz A, Innocenti G, Rush J, et al: Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res. 72:3312–3323. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA, Thakur M, Beaumont V, Bonnert TP, Heavens R, et al: Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology. 33:685–700. 2007. View Article : Google Scholar : PubMed/NCBI | |
Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, Riely GJ, Solomon B, Ou SH, Kim DW, et al: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: Updated results from a phase 1 study. Lancet Oncol. 13:1011–1019. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, et al: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Kim DW, Nakagawa K, Seto T, Crinó L, Ahn MJ, De Pas T, Besse B, Solomon BJ, Blackhall F, et al: Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 368:2385–2394. 2013. View Article : Google Scholar : PubMed/NCBI | |
Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, et al: First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 371:2167–2177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Pérot G, Dupin C, Daubech A, Belleannée G, Gros A, et al: Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 33:e84–e87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, et al: EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 363:1734–1739. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heuckmann JM, Hölzel M, Sos ML, Heynck S, Balke-Want H, Koker M, Peifer M, Weiss J, Lovly CM, Grütter C, et al: ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res. 17:7394–7401. 2011. View Article : Google Scholar : PubMed/NCBI | |
Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, et al: Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 18:1472–1482. 2012. View Article : Google Scholar : PubMed/NCBI | |
Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, et al: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 4:120ra1172012. View Article : Google Scholar | |
Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, Gray NS, Wilner K, Christensen JG, Demetri G, et al: The neuroblastoma associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK translocated cancers. Cancer Res. 70:10038–10043. 2010. View Article : Google Scholar : PubMed/NCBI | |
Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, et al: Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 346:1480–1486. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ji C, Zhang L, Cheng Y, Patel R, Wu H, Zhang Y, Wang M, Ji S, Belani CP, Yang JM and Ren X: Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer. Cancer Biol Ther. 15:570–577. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mengoli MC, Barbieri F, Bertolini F, Tiseo M and Rossi G: K-RAS mutations indicating primary resistance to crizotinib in ALK-rearranged adenocarcinomas of the lung: Report of two cases and review of the literature. Lung Cancer. 93:55–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sequist LV, Gettinger S, Senzer NN, Martins RG, Jänne PA, Lilenbaum R, Gray JE, Iafrate AJ, Katayama R, Hafeez N, et al: Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol. 28:4953–4960. 2010. View Article : Google Scholar : PubMed/NCBI | |
Normant E, Paez G, West KA, Lim AR, Slocum KL, Tunkey C, McDougall J, Wylie AA, Robison K, Caliri K, et al: The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene. 30:2581–2586. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, et al: Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 370:1189–1197. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O and Sakamoto H: Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 13:2910–2918. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, Oikawa N, Tsukuda T, Ishii N and Aoki Y: CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 19:679–690. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, Camidge DR, Socinski MA, Chiappori A, Mekhail T, et al: Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: A single-group, multicentre, phase 2 trial. Lancet Oncol. 17:234–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, Tang RW, Wang H, Tsaparikos K, Wang J, et al: PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell. 28:70–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang WS, Liu S, Zou D, Thomas M, Wang Y, Zhou T, Romero J, Kohlmann A, Li F, Qi J, et al: Discovery of Brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J Med Chem. 59:4948–4964. 2016. View Article : Google Scholar : PubMed/NCBI | |
George SK, Vishwamitra D, Manshouri R, Shi P and Amin HM: The ALK inhibitor ASP3026 eradicates NPM-ALK+ T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 5:5750–5763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Kim HC, Hong JY, Wang K, Kim SY, Jang J, Kim ST, Park JO, Lim HY, Kang WK, et al: Detection of novel and potentially actionable anaplastic lymphoma kinase (ALK) rearrangement in colorectal adenocarcinoma by immunohistochemistry screening. Oncotarget. 6:24320–24332. 2015.PubMed/NCBI | |
Lovly CM, Heuckmann JM, de Stanchina E, Chen H, Thomas RK, Liang C and Pao W: Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res. 71:4920–4931. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C, Jiang Q, Xue L, Lovly CM, Jimenez JP, et al: Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov. 3:430–443. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bonvini P, Gastaldi T, Falini B and Rosolen A: Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: Down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 62:1559–1566. 2002.PubMed/NCBI | |
Bloomfield M and Duesberg P: Inherent variability of cancer-specific aneuploidy generates metastases. Mol Cytogenet. 9:902016. View Article : Google Scholar : PubMed/NCBI | |
Heng HH, Regan SM, Liu G and Ye CJ: Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet. 9:152016. View Article : Google Scholar : PubMed/NCBI | |
Ye CJ, Regan S, Liu G, Alemara S and Heng HH: Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet. 11:312018. View Article : Google Scholar : PubMed/NCBI | |
Bloomfield M and Duesberg P: Is cancer progression caused by gradual or simultaneous acquisitions of new chromosomes? Mol Cytogenet. 11:42018. View Article : Google Scholar : PubMed/NCBI | |
Horne SD, Pollick SA and Heng HH: Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer. 136:2012–2021. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C, Delsol G, et al: Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest. 81:419–426. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M, Rajcan-Separovic E, Raghab J, Delsol G and Espinos E: Non-muscle myosin heavy chain (MYH9): A new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer. 37:427–432. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cools J, Wlodarska I, Somers R, Mentens N, Pedeutour F, Maes B, De Wolf-Peeters C, Pauwels P, Hagemeijer A and Marynen P: Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 34:354–362. 2002. View Article : Google Scholar : PubMed/NCBI | |
Feldman AL, Vasmatzis G, Asmann YW, Davila J, Middha S, Eckloff BW, Johnson SH, Porcher JC, Ansell SM and Caride A: Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma. Genes Chromosomes Cancer. 52:1097–1102. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pelicci PG and Falini B: A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res. 60:793–798. 2000.PubMed/NCBI | |
Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W, Lui MY, Colleoni GW, Antonescu CR, Ladanyi M and Morris SW: Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 159:411–415. 2001. View Article : Google Scholar : PubMed/NCBI | |
Iyevleva AG, Raskin GA, Tiurin VI, Sokolenko AP, Mitiushkina NV, Aleksakhina SN, Garifullina AR, Strelkova TN, Merkulov VO, Ivantsov AO, et al: Novel ALK fusion partners in lung cancer. Cancer Lett. 362:116–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hernández L, Pinyol M, Hernández S, Beà S, Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, et al: TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 94:3265–3268. 1999.PubMed/NCBI | |
Liang X, Meech SJ, Odom LF, Bitter MA, Ryder JW, Hunger SP, Lovell MA, Meltesen L, Wei Q, Williams SA, et al: Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol. 121:496–506. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CD and Fletcher JA: TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 157:377–384. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lamant L, Dastugue N, Pulford K, Delsol G and Mariamé B: A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 93:3088–3095. 1999.PubMed/NCBI | |
Onoda T, Kanno M, Sato H, Takahashi N, Izumino H, Ohta H, Emura T, Katoh H, Ohizumi H, Ohtake H, et al: Identification of novel ALK rearrangement A2M-ALK in a neonate with fetal lung interstitial tumor. Genes Chromosomes Cancer. 53:865–874. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ou SH, Klempner SJ, Greenbowe JR, Azada M, Schrock AB, Ali SM, Ross JS, Stephens PJ and Miller VA: Identification of a novel HIP1-ALK fusion variant in non-small-cell lung cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to Alectinib. J Thorac Oncol. 9:1821–1825. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fang DD, Zhang B, Gu Q, Lira M, Xu Q, Sun H, Qian M, Sheng W, Ozeck M, Wang Z, et al: HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 9:285–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Choi YL, Lira ME, Hong M, Kim RN, Choi SJ, Song JY, Pandy K, Mann DL, Stahl JA, Peckham HE, et al: A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol. 9:563–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim D, Ji Y, Kim DH, Park WY, Shin HT, et al: Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 11:e10054672015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Krishnan C, Nguyen E, Meyer KJ, Oliveira JL, Yang P, Yi ES, Yaszemski MJ, Maran A, Erickson-Johnson MR and Oliveira AM: Fusion of dynactin 1 (DCTN1) to ALK in inflammatory myofibroblastic tumor. Lab Invest. 2011. | |
Shimada Y, Kohno T, Ueno H, Ino Y, Hayashi H, Nakaoku T, Sakamoto Y, Kondo S, Morizane C, Shimada K, et al: An oncogenic ALK fusion and an RRAS mutation in KRAS mutation-negative pancreatic ductal adenocarcinoma. Oncologist. 22:158–164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K, Soda M, Togashi Y, Sugawara E, Hatano S, Asaka R, Okumura S, Nakagawa K, Mano H and Ishikawa Y: Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: Reappraisal of Anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res. 17:3341–3348. 2011. View Article : Google Scholar : PubMed/NCBI | |
Panagopoulos I, Nilsson T, Domanski HA, Isaksson M, Lindblom P, Mertens F and Mandahl N: Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer. 118:1181–1186. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ouchi K, Miyachi M, Tsuma Y, Tsuchiya K, Iehara T, Konishi E, Yanagisawa A and Hosoi H: FN1: A novel fusion partner of ALK in an inflammatory myofibroblastic tumor. Pediatric Blood Cancer. 62:909–911. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, Zuppan C and Bridge JA: Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 37:98–105. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kusano H, Togashi Y, Akiba J, Moriya F, Baba K, Matsuzaki N, Yuba Y, Shiraishi Y, Kanamaru H, Kuroda N, et al: Two cases of renal cell carcinoma harboring a novel STRN-ALK fusion gene. Am J Surg Pathol. 40:761–769. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lovly CM, Mcdonald NT, Chen H, Ortiz-Cuaran S, Heukamp LC, Yan Y, Florin A, Ozretić L, Lim D, Wang L, et al: Rationale for co-targeting IGF-1R and ALK inALKfusion positive lung cancer. Nat Med. 20:1027–1034. 2014. View Article : Google Scholar : PubMed/NCBI | |
Di Paolo D, Yang D, Pastorino F, Emionite L, Cilli M, Daga A, Destafanis E, Di Fiore A, Piaggio F, Brignole C, et al: New therapeutic strategies in neuroblastoma: Combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK. Oncotarget. 6:28774–28789. 2015. View Article : Google Scholar : PubMed/NCBI | |
Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, Hida T, Yamamoto N, Yoshioka H, Harada M, et al: CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): A single-arm, open-label, phase 1–2 study. Lancet Oncol. 14:590–598. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, Morcos PN, Lee RM, Garcia L, Yu L, et al: Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): Results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 15:1119–1128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng YL, Dinh D, et al: Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem. 57:4720–4744. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mologni L, Ceccon M, Pirola A, Chiriano G, Piazza R, Scapozza L and Gambacorti-Passerini C: NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922. Oncotarget. 6:5720–5734. 2015. View Article : Google Scholar : PubMed/NCBI | |
Basit S, Ashraf Z, Lee K and Latif M: First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur J Med Chem. 134:348–356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, Shakespeare WC, Iafrate AJ, Engelman JA and Shaw AT: Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 108:7535–7540. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ceccon M, Mologni L, Bisson W, Scapozza L and Gambacorti-Passerini C: Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors. Mol Cancer Res. 11:122–132. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Quail MR, Gingrich DE, Ott GR, Lu L, Wan W, Albom MS, Angeles TS, Aimone LD, Cristofani F, et al: CEP-28122, a highly potent and selective orally active inhibitor of anaplastic lymphoma kinase with antitumor activity in experimental models of human cancers. Mol Cancer Ther. 11:670–679. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arkenau HT, Sachdev JC, Mita MM, Dziadziuszko R, Lin CC, Yang JC, Infante JR, Anthony SP, Voskoboynik M, Su WC, et al: Phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer. J Clin Oncol. 33:8063. 2015. | |
Mori M, Ueno Y, Konagai S, Fushiki H, Shimada I, Kondoh Y, Saito R, Mori K, Shindou N, Soga T, et al: The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice. Mol Cancer Ther. 13:329–340. 2014. View Article : Google Scholar : PubMed/NCBI | |
Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF, Iafrate AJ, Takeuchi K, Taiji M, Okuno Y, et al: Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res. 20:5686–5696. 2014. View Article : Google Scholar : PubMed/NCBI |