1
|
Bettington M, Walker N, Clouston A, Brown
I, Leggett B and Whitehall V: The serrated pathway to colorectal
carcinoma: Current concepts and challenges. Histopathology.
62:367–386. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Worthley DL and Leggett BA: Colorectal
cancer: Molecular features and clinical opportunities. Clin Biochem
Rev. 31:31–38. 2010.PubMed/NCBI
|
3
|
Stadler ZK, Battaglin F, Middha S,
Hechtman JF, Tran C, Cercek A, Yaeger R, Segal NH, Varghese AM,
Reidy-Lagunes DL, et al: Reliable detection of mismatch repair
deficiency in colorectal cancers using mutational load in
next-generation sequencing panels. J Clin Oncol. 34:2141–2147.
2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Llinàs-Arias P and Esteller M: Epigenetic
inactivation of tumour suppressor coding and non-coding genes in
human cancer: An update. Open Biol. 7(170152)2017.
|
5
|
Al-Sohaily S, Biankin A, Leong R,
Kohonen-Corish M and Warusavitarne J: Molecular pathways in
colorectal cancer. J Gastroenterol Hepatol. 27:1423–1431. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sharma SG and Gulley ML: BRAF mutation
testing in colorectal cancer. Arch Pathol Lab Med. 134:1225–1228.
2010.PubMed/NCBI
|
7
|
Meldrum C, Doyle MA and Tothill RW:
Next-generation sequencing for cancer diagnostics: A Practical
perspective. Clin Biochem Rev. 32:177–195. 2011.PubMed/NCBI
|
8
|
Serrati S, De Summas S, Pilato B,
Petriella D, Lacalamita R, Tommasi S and Pinto R: Next-generation
sequencing: Advances and applications in cancer diagnosis. Onco
Targets Ther. 9:7355–7365. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Buhard O, Cattaneo F, Wong YF, Yim SF,
Friedman E, Flejou JF, Duval A and Hamelin R: Multipopulation
analysis of polymorphisms in five mononucleotide repeats used to
determine the microsatellite instability status of human tumors. J
Clin Oncol. 24:241–251. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Søreide K: High-fidelity of five
quasimonomorphic mononucleotide repeats to high-frequency
microsatellite instability distribution in early-stage
adenocarcinoma of the colon. Anticancer Res. 31:967–971.
2011.PubMed/NCBI
|
11
|
Benlloch S, Payá A, Alenda C, Bessa X,
Andreu M, Jover R, Castells A, Llor X, Aranda FI and Massutí B:
Detection of BRAF V600E mutation in colorectal cancer: comparison
of automatic sequencing and real-time chemistry methodology. J Mol
Diagn. 8:540–543. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jasek K, Buzalkova V, Minarik G, Stanclova
A, Szepe P, Plank L and Lasabova Z: Detection of mutations in the
BRAF gene in patients with KIT and PDGFRA wild-type
gastrointestinal stromal tumors. Virchows Arch. 470:29–36. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Minárik G, Plank L, Lasabová Z, Szemes T,
Burjanivová T, Szépe P, Buzalková V, Porubský D and Sufliarsky J:
Spectrum of mutations in gastrointestinal stromal tumor patients-a
population based study from Slovakia. APMIS. 121:539–548. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
House MG, Guo M, Iacobuzio-Donahue C and
Herman JG: Molecular progression of promoter methylation in
intraductal mucinous neoplasm (IPMN) of the pancreas.
Carcinogenesis. 24:193–198. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lasabova Z, Tilandyova P, Kajo K, Zubor P,
Burjanivova T, Danko J and Plank L: Hypermethylation of the GSTP1
promoter region in breast cancer is associated with prognostic
clinicopathological parameters. Neoplasma. 57:35–40. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Herman JG, Umar A, Polyak K, Graff JR,
Ahuja N, Issa JPJ, Markowitz S, Willson JK, Hamilton SR, Kinzler
KW, et al: Incidence and functional consequences of hMLH1 promoter
hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA.
95:6870–6875. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Coelho H, Jones-Hughes T, Snowsill T,
Briscoe S, Huxley N, Frayling IM and Hyde C: A systematic review of
test accuracy studies evaluating molecular micro-satellite
instability testing for the detection of individuals with lynch
syndrome. BMC Cancer. 17:8362017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hendriks YM, de Jong AE, Morreau H, Tops
CM, Vasen HF, Wijnen JT, Breuning MH and Bröcker-Vriends AH:
Diagnostic approach and management of lynch syndrome (hereditary
nonpolyposis colorectal carcinoma): A guide for clinicians. CA
Cancer J Clin. 56:213–225. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kheirelseid EAH, Miller N and Kerin MJ:
Molecular biology of colorectal cancer: Review of the literature.
Am J Mol Biol. 3:72–80. 2013. View Article : Google Scholar
|
20
|
Schofield L, Watson N, Grieu F, Li WQ,
Zeps N, Harvey J, Stewart C, Abdo M, Goldblatt J and Iacopetta B:
Population-based detection of Lynch syndrome in young colorectal
cancer patients using microsatellite instability as the initial
test. Int J Cancer. 124:1097–1102. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hampel H, Frankel WL, Martin E, Arnold M,
Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J,
et al: Screening for the Lynch syndrome (hereditary nonpolyposis
colorectal cancer). N Engl J Med. 352:1851–1860. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ribic CM, Sargent DJ, Moore MJ, Thibodeau
SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R,
Shepherd LE, et al: Tumor microsatellite-instability status as a
predictor of benefit from fluorouracil-based adjuvant chemotherapy
for colon cancer. N Engl J Med. 349:247–257. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gatalica Z, Vranic S, Xiu J, Swensen J and
Reddy S: High microsatellite instability (MSI-H) colorectal
carcinoma: A brief review of predictive biomarkers in the era of
personalized medicine. Fam Cancer. 15:405–412. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Snowsill T, Huxley N, Hoyle M,
Jones-Hughes T, Coelho H, Cooper C, Frayling I and Hyde C: A
systematic review and economic evaluation of diagnostic strategies
for Lynch syndrome. Health Technol Assess. 18:1–406. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Buchanan DD, Clendenning M, Rosty C,
Eriksen SV, Walsh MD, Walters RJ, Thibodeau SN, Stewart J, Preston
S, Win AK, et al: Tumor testing to identify lynch syndrome in two
Australian colorectal cancer cohorts. J Gastroenterol Hepatol.
32:427–438. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cohen R, Buhard O, Cervera P, Hain E,
Dumont S, Bardier A, Bachet JB, Gornet JM, Lopez-Trabada D, Dumont
S, et al: Clinical and molecular characterisation of hereditary and
sporadic metastatic colorectal cancers harbouring microsatellite
instability/DNA mismatch repair deficiency. Eur J Cancer.
86:266–274. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Deng G, Bell I, Crawley S, Gum J, Terdiman
JP, Allen BA, Truta B, Sleisenger MH and Kim YS: BRAF mutation is
frequently present in sporadic colorectal cancer with methylated
hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin
Cancer Res. 10:191–195. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Suraweera N, Duval A, Reperant M, Vaury C,
Furlan D, Leroy K, Seruca R, Iacopetta B and Hamelin R: Evaluation
of tumor microsatellite instability using five quasimonomorphic
mononucleotide repeats and pentaplex PCR. Gastroenterology.
123:1804–1811. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Adar T, Rodgers LH, Shannon KM, Yoshida M,
Ma T, Mattia A, Lauwers GY, Iafrate AJ and Chung DC: A tailored
approach to BRAF and MLH1 methylation testing in a universal
screening program for Lynch syndrome. Mod Pathol. 30:440–447. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Seppälä TT, Böhm JP, Friman M, Lahtinen L,
Väyrynen VM, Liipo TK, Ristimäki AP, Kairaluoma MV, Kellokumpu IH,
Kuopio TH and Mecklin JP: Combination of microsatellite instability
and BRAF mutation status for subtyping colorectal cancer. Br J
Cancer. 112:1966–1975. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Snover DC: Update on the serrated pathway
to colorectal carcinoma. Hum Pathol. 42:1–10. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wolf AI, Buchanan AH and Farkas LM:
Historical review of Lynch syndrome. J Coloproctol (Rio J).
33:2013.
|
34
|
Le S, Ansari U, Mumtaz A, Malik K, Patel
P, Doyle A and Khachemoune A: Lynch syndrome and muir-torre
syndrome: An update and review on the genetics, epidemiology, and
management of two related disorders. Derma Online J. 23:22017.
|
35
|
Peltomäki P and Vasen H: Mutations
associated with HNPCC predisposition-Update of ICG-HNPCC/INSiGHT
mutation database. Dis Markers. 20:269–276. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Goldberg Y, Kedar I, Kariiv R, Halpern N,
Plesser M, Hubert A, Kaduri L, Sagi M, Lerer I, Abeliovich D, et
al: Lynch syndrome in high risk Ashkenazi Jews in Israel. Fam
Cancer. 13:65–73. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cravo M, Afonso AJ, Lage P, Albuquerque C,
Maia L, Lacerda C, Fidalgo P, Chaves P, Cruz C and Nobre-Leitão C:
Pathogenicity of missense and splice site mutations in hMSH2 and
hMLH1 mismatch repair genes: Implications for genetic testing. Gut.
50:405–412. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Haraldsdottir S, Rafnar T, Frankel WL,
Einarsdottir S, Sigurdsson A, Hampel H, Snaebjornsson P, Masson G,
Weng D, Arngrimsson R, et al: Comprehensive population-wide
analysis of Lynch syndrome in Iceland reveals founder mutations in
MSH6 and PMS2. Nat Commun. 8:147552017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lagerstedt Robinson K, Liu T, Vandrovcova
J, Halvarsson B, Clendenning M, Frebourg T, Papadopoulos N, Kinzler
KW, Vogelstein B, Peltomäki P, et al: Lynch syndrome (hereditary
nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst.
99:291–299. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Houlleberghs H, Goverde A, Lusseveld J,
Dekker M, Bruno MJ, Menko FH, Mensenkamp AR, Spaander MCW, Wagner
A, Hofstra RMW and Te Riele H: Suspected Lynch syndrome associated
MSH6 variants: A functional assay to determine their pathogenicity.
PLoS Genet. 13:e10067652017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bartosova Z, Fridrichova I, Bujalkova M,
Wolf B, Ilencikova D, Krizan P, Hlavcak P, Palaj J, Lukac L,
Lukacova M, et al: Novel MLH1 and MSH2 germline mutations in the
first HNPCC families identified in Slovakia. Hum Mutat. 21:4492003.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Rey JM, Noruzinia M, Brouillet JP, Sarda
P, Maudelonde T and Pujol P: Six novel heterozygous MLH1, MSH2, and
MSH6 and one homozygous MLH1 germline mutations in hereditary
nonpolyposis colorectal cancer. Cancer Genet Cytogenet.
155:149–151. 2004. View Article : Google Scholar : PubMed/NCBI
|