1
|
A clinical evaluation of the International
Lymphoma Study Group classification of non-Hodgkin's lymphoma. The
non-hodgkin's lymphoma classification project. Blood. 89:3909–3918.
1997.
|
2
|
McGuire S: World cancer report 2014.
(Geneva, Switzerland). World health organization, International
agency for research on cancer, WHO Press 2015. Adv Nutr. 7:418–419.
2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sarkozy C and Sehn LH: Management of
relapsed/refractory DLBCL. Best Pract Res Clin Haematol.
31:209–216. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Teras LR, DeSantis CE, Cerhan JR, Morton
LM, Jemal A and Flowers CR: 2016 US lymphoid malignancy statistics
by World Health Organization subtypes. CA Cancer J Clin. Sep
12–2016.(Epub ahead of print). doi: 10.3322/caac.21357. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sharma A and Bhimji SS: Bortezomib.
StatPearls [Internet]. Treasure Island (FL) StatPearls Publishing.
Oct 27–2018.
|
6
|
Camicia R, Winkler HC and Hassa PO: Novel
drug targets for personalized precision medicine in
relapsed/refractory diffuse large B-cell lymphoma: A comprehensive
review. Mol Cancer. 14:2072015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yazbeck V, Shafer D, Perkins EB, Coppola
D, Sokol L, Richards KL, Shea T, Ruan J, Parekh S, Strair R, et al:
A phase II trial of bortezomib and vorinostat in mantle cell
lymphoma and diffuse large B-cell lymphoma. Clin Lymphoma Myeloma
Leuk. 18:569–575. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Evens AM, Rosen ST, Helenowski I, Kline J,
Larsen A, Colvin J, Winter JN, van Besien KM, Gordon LI and Smith
SM: A phase I/II trial of bortezomib combined concurrently with
gemcitabine for relapsed or refractory DLBCL and peripheral T-cell
lymphomas. Br J Haematol. 163:55–61. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mitsiades CS, Mitsiades NS, McMullan CJ,
Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R,
Munshi NC, et al: Antimyeloma activity of heat shock protein-90
inhibition. Blood. 107:1092–1100. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nencioni A, Hua F, Dillon CP, Yokoo R,
Scheiermann C, Cardone MH, Barbieri E, Rocco I, Garuti A,
Wesselborg S, et al: Evidence for a protective role of Mcl-1 in
proteasome inhibitor-induced apoptosis. Blood. 105:3255–3262. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang HQ, Liu HM, Zhang HY, Guan Y and Du
ZX: Transcriptional upregulation of BAG3 upon proteasome
inhibition. Biochem Biophys Res Commun. 365:381–385. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Sondermann H, Scheufler C, Schneider C,
Hohfeld J, Hartl FU and Moarefi I: Structure of a Bag/Hsc70
complex: Convergent functional evolution of Hsp70 nucleotide
exchange factors. Science. 291:1553–1557. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shi H, Xu H, Li Z, Zhen Y, Wang B, Huo S,
Xiao R and Xu Z: BAG3 regulates cell proliferation, migration, and
invasion in human colorectal cancer. Tumour Biol. 37:5591–5597.
2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu H, Wu W, Fu Y, Shen W, Miao K, Hong M,
Xu W, Young KH, Liu P and Li J: Overexpressed BAG3 is a potential
therapeutic target in chronic lymphocytic leukemia. Ann Hematol.
93:425–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Festa M, Del Valle L, Khalili K, Franco R,
Scognamiglio G, Graziano V, De Laurenzi V, Turco MC and Rosati A:
BAG3 protein is overexpressed in human glioblastoma and is a
potential target for therapy. Am J Pathol. 178:2504–2512. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Gentilella A and Khalili K: BAG3
expression in glioblastoma cells promotes accumulation of
ubiquitinated clients in an Hsp70-dependent manner. J Biol Chem.
286:9205–9215. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liao Q, Ozawa F, Friess H, Zimmermann A,
Takayama S, Reed JC, Kleeff J and Büchler MW: The anti-apoptotic
protein BAG-3 is overexpressed in pancreatic cancer and induced by
heat stress in pancreatic cancer cell lines. FEBS Lett.
503:151–157. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Romano MF, Festa M, Petrella A, Rosati A,
Pascale M, Bisogni R, Poggi V, Kohn EC, Venuta S, Turco MC, et al:
BAG3 protein regulates cell survival in childhood acute
lymphoblastic leukemia cells. Cancer Biol Ther. 2:508–510. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chiappetta G, Ammirante M, Basile A,
Rosati A, Festa M, Monaco M, Vuttariello E, Pasquinelli R, Arra C,
Zerilli M, et al: The antiapoptotic protein BAG3 is expressed in
thyroid carcinomas and modulates apoptosis mediated by tumor
necrosis factor-related apoptosis-inducing ligand. J Clin
Endocrinol Metab. 92:1159–1163. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Staibano S, Mascolo M, Di Benedetto M,
Vecchione ML, Ilardi G, Di Lorenzo G, Autorino R, Salerno V, Morena
A, Rocco A, et al: BAG3 protein delocalisation in prostate
carcinoma. Tumour Biol. 31:461–469. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu P, Xu B, Li J and Lu H: BAG3 gene
silencing sensitizes leukemic cells to Bortezomib-induced
apoptosis. FEBS Lett. 583:401–406. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Uddin S, Hussain AR, Siraj AK, Manogaran
PS, Al-Jomah NA, Moorji A, Atizado V, Al-Dayel F, Belgaumi A,
El-Solh H, et al: Role of phosphatidylinositol 3′-kinase/AKT
pathway in diffuse large B-cell lymphoma survival. Blood.
108:4178–4186. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fang X, Jiang Y, Feng L, Chen H, Zhen C,
Ding M and Wang X: Blockade of PI3K/AKT pathway enhances
sensitivity of Raji cells to chemotherapy through down-regulation
of HSP70. Cancer Cell Int. 13:482013. View Article : Google Scholar : PubMed/NCBI
|
24
|
West KA, Castillo SS and Dennis PA:
Activation of the PI3K/Akt pathway and chemotherapeutic resistance.
Drug Resist Updat. 5:234–248. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hasselblom S, Hansson U, Olsson M, Torén
L, Bergström A, Nilsson-Ehle H and Andersson PO: High
immunohistochemical expression of p-AKT predicts inferior survival
in patients with diffuse large B-cell lymphoma treated with
immunochemotherapy. Br J Haematol. 149:560–568. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Du ZX, Zhang HY, Meng X, Gao YY, Zou RL,
Liu BQ, Guan Y and Wang HQ: Proteasome inhibitor MG132 induces BAG3
expression through activation of heat shock factor 1. J Cell
Physiol. 218:631–637. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rapino F, Abhari BA, Jung M and Fulda S:
NIK is required for NF-κB-mediated induction of BAG3 upon
inhibition of constitutive protein degradation pathways. Cell Death
Dis. 6:e16922015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang HQ, Liu BQ, Gao YY, Meng X, Guan Y,
Zhang HY and Du ZX: Inhibition of the JNK signalling pathway
enhances proteasome inhibitor-induced apoptosis of kidney cancer
cells by suppression of BAG3 expression. Br J Pharmacol.
158:1405–1412. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang J, Ding T, Yang M, Liu H, Sun X and
Jin J: Antitumor activity and drug interactions of proteasome
inhibitor Bortezomib in human high-risk myelodysplastic syndrome
cells. Int J Hematol. 93:482–493. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen KF, Yeh PY, Hsu C, Hsu CH, Lu YS,
Hsieh HP, Chen PJ and Cheng AL: Bortezomib overcomes tumor necrosis
factor-related apoptosis-inducing ligand resistance in
hepatocellular carcinoma cells in part through the inhibition of
the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem.
284:11121–11133. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yeramian A, Sorolla A, Velasco A,
Santacana M, Dolcet X, Valls J, Abal L, Moreno S, Egido R, Casanova
JM, et al: Inhibition of activated receptor tyrosine kinases by
Sunitinib induces growth arrest and sensitizes melanoma cells to
Bortezomib by blocking Akt pathway. Int J Cancer. 130:967–978.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ruggeri B, Miknyoczki S, Dorsey B and Hui
AM: The development and pharmacology of proteasome inhibitors for
the management and treatment of cancer. Adv Pharmacol. 57:91–135.
2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Crawford LJ, Walker B and Irvine AE:
Proteasome inhibitors: A therapeutic strategy for haematological
malignancy. Front Biosci. 13:4285–4296. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Park DJ and Lenz HJ: The role of
proteasome inhibitors in solid tumors. Ann Med. 36:296–303. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Jones MD, Liu JC, Barthel TK, Hussain S,
Lovria E, Cheng D, Schoonmaker JA, Mulay S, Ayers DC, Bouxsein ML,
et al: A proteasome inhibitor, bortezomib, inhibits breast cancer
growth and reduces osteolysis by downregulating metastatic genes.
Clin Cancer Res. 16:4978–4989. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Manasanch EE and Orlowski RZ: Proteasome
inhibitors in cancer therapy. Nat Rev Clin Oncol. 14:417–433. 2017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Voorhees PM and Orlowski RZ: The
proteasome and proteasome inhibitors in cancer therapy. Annu Rev
Pharmacol Toxicol. 46:189–213. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bu R, Hussain AR, Al-Obaisi KA, Ahmed M,
Uddin S and Al-Kuraya KS: Bortezomib inhibits proteasomal
degradation of IκBα and induces mitochondrial dependent apoptosis
in activated B-cell diffuse large B-cell lymphoma. Leuk Lymphoma.
55:415–424. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dunleavy K, Pittaluga S, Czuczman MS, Dave
SS, Wright G, Grant N, Shovlin M, Jaffe ES, Janik JE, Staudt LM, et
al: Differential efficacy of bortezomib plus chemotherapy within
molecular subtypes of diffuse large B-cell lymphoma. Blood.
113:6069–6076. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wright JJ: Combination therapy of
bortezomib with novel targeted agents: an emerging treatment
strategy. Clin Cancer Res. 16:4094–4104. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Dasmahapatra G, Patel H, Dent P, Fisher
RI, Friedberg J and Grant S: The Bruton tyrosine kinase (BTK)
inhibitor PCI-32765 synergistically increases proteasome inhibitor
activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell
lymphoma (MCL) cells sensitive or resistant to bortezomib. Br J
Haematol. 161:43–56. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fenske TS, Shah NM, Kim KM, Saha S, Zhang
C, Baim AE, Farnen JP, Onitilo AA, Blank JH, Ahuja H, et al: A
phase 2 study of weekly temsirolimus and bortezomib for relapsed or
refractory B-cell non-Hodgkin lymphoma: A wisconsin oncology
network study. Cancer. 121:3465–3471. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yu W, Chen Y, Xiang R, Xu W, Wang Y, Tong
J, Zhang N, Wu Y and Yan H: Novel phosphatidylinositol 3-kinase
inhibitor BKM120 enhances the sensitivity of multiple myeloma to
bortezomib and overcomes resistance. Leuk Lymphoma. 58:428–437.
2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Qu FL, Xia B, Li SX, Tian C, Yang HL, Li
Q, Wang YF, Yu Y and Zhang YZ: Synergistic suppression of the PI3K
inhibitor CAL-101 with bortezomib on mantle cell lymphoma growth.
Cancer Biol Med. 12:401–408. 2015.PubMed/NCBI
|
45
|
Lin L, Gaut D, Hu K, Yan H, Yin D and
Koeffler HP: Dual targeting of glioblastoma multiforme with a
proteasome inhibitor (Velcade) and a phosphatidylinositol 3-kinase
inhibitor (ZSTK474). Int J Oncol. 44:557–562. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kim A, Park S, Lee JE, Jang WS, Lee SJ,
Kang HJ and Lee SS: The dual PI3K and mTOR inhibitor NVP-BEZ235
exhibits anti-proliferative activity and overcomes bortezomib
resistance in mantle cell lymphoma cells. Leuk Res. 36:912–920.
2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Franceschelli S, Rosati A, Lerose R, De
Nicola S, Turco MC and Pascale M: Bag3 gene expression is regulated
by heat shock factor 1. J Cell Physiol. 215:575–577. 2008.
View Article : Google Scholar : PubMed/NCBI
|