1
|
Little EG and Eide MJ: Update on the
current state of melanoma incidence. Dermatol Clin. 30:355–361.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Buzaid AC and Atkins M: Practical
guidelines for the management of biochemotherapy-related toxicity
in melanoma. Clin Cancer Res. 7:2611–2619. 2001.PubMed/NCBI
|
3
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J,
Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin.
58:71–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Robson EJ, He SJ and Eccles MR: A PANorama
of PAX genes in cancer and development. Nat Rev Cancer. 6:52–62.
2006. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Corry GN and Underhill DA: Pax3 target
gene recognition occurs through distinct modes that are
differentially affected by disease-associated mutations. Pigment
Cell Res. 18:427–38. 2005.PubMed/NCBI
|
6
|
Chalepakis G and Gruss P: Identification
of DNA recognition sequences for the Pax3 paired domain. Gene.
162:267–270. 1995. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chalepakis G, Jones FS, Edelman GM and
Gruss P: Pax-3 contains domains for transcription activation and
transcription inhibition. Proc Natl Acad Sci USA. 91:12745–12749.
1994. View Article : Google Scholar : PubMed/NCBI
|
8
|
Epstein DJ, Vogan KJ, Trasler DG and Gros
P: A mutation within intron 3 of the Pax-3 gene produces aberrantly
spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc
Natl Acad Sci USA. 90:532–536. 1993. View Article : Google Scholar : PubMed/NCBI
|
9
|
Medic S, Rizos H and Ziman M: Differential
PAX3 functions in normal skin melanocytes and melanoma cells.
Biochem Biophys Res Commun. 411:832–837. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barber TD, Barber MC, Cloutier TE and
Friedman TB: PAX3 gene structure, alternative splicing and
evolution. Gene. 237:311–319. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Barr FG, Fitzgerald JC, Ginsberg JP,
Vanella ML, Davis RJ and Bennicelli JL: Predominant expression of
alternative PAX3 and PAX7 forms in myogenic and neural tumor cell
lines. Cancer Res. 59:5443–5448. 1999.PubMed/NCBI
|
12
|
Takeuchi H, Morton DL, Kuo C, Turner RR,
Elashoff D, Elashoff R, Taback B, Fujimoto A and Hoon DS:
Prognostic significance of molecular upstaging of paraffin embedded
sentinel lymph nodes in melanoma patients. J Clin Oncol.
22:2671–2680. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Galibert MD, Yavuzer U, Dexter TJ and
Goding CR: Pax3 and regulation of the melanocyte-specific
tyrosinase-related protein-1 promoter. J Biol Chem.
274:26894–26900. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Reid AL, Millward M, Pearce R, Lee M,
Frank MH, Ireland A, Monshizadeh L, Rai T, Heenan P, Medic S, et
al: Markers of circulating tumour cells in the peripheral blood of
patients with melanoma correlate with disease recurrence and
progression. Br J Dermatol. 168:85–92. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kubic JD, Little EC, Lui JW, Iizuka T and
Lang D: PAX3 and ETS1 synergistically activate MET expression in
melanoma cells. Oncogene. 34:4964–4974. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kubic JD, Lui JW, Little EC, Ludvik AE,
Konda S, Salgia R, Aplin AE and Lang D: PAX3 and FOXD3 promote
CXCR4 expression in melanoma. J Biol Chem. 290:21901–21914. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cao J, Dai X, Wan L, Wang H, Zhang J, Goff
PS, Sviderskaya EV, Xuan Z, Xu Z, Xu X, et al: The E3 ligase
APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to
suppress melanocyte proliferation and melanoma growth. Sci Signal.
8:ra872015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Iyengar AS, Miller PJ, Loupe JM and
Hollenbach AD: Phosphorylation of PAX3 contributes to melanoma
phenotypes by affecting proliferation, invasion, and
transformation. Pigment Cell Melanoma Res. 27:846–848. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Haqq C, Nosrati M, Sudilovsky D, Crothers
J, Khodabakhsh D, Pulliam BL, Federman S, Miller JR III, Allen RE,
Singer MI, et al: The gene expression signatures of melanoma
progression. Proc Natl Acad Sci USA. 102:6092–6097. 2005.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Riker AI, Enkemann SA, Fodstad O, Liu S,
Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The
gene expression profiles of primary and metastatic melanoma yields
a transition point of tumor progression and metastasis. BMC Med
Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Talantov D, Mazumder A, Yu JX, Briggs T,
Jiang Y, Backus J, Atkins D and Wang Y: Novel genes associated with
malignant melanoma but not benign melanocytic lesions. Clin Cancer
Res. 11:7234–7242. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wagner KW, Punnoose EA, Januario T,
Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF,
Totpal K, et al: Death-receptor O-glycosylation controls tumor-cell
sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med.
13:1070–1077. 2007. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Pratilas CA, Taylor BS, Ye Q, Viale A,
Sander C, Solit DB and Rosen N: (V600E)BRAF is associated with
disabled feedback inhibition of RAF-MEK signaling and elevated
transcriptional output of the pathway. Proc Natl Acad Sci USA.
106:4519–4524. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu L, Shen SS, Hoshida Y, Subramanian A,
Ross K, Brunet JP, Wagner SN, Ramaswamy S, Mesirov JP and Hynes RO:
Gene expression changes in an animal melanoma model correlate with
aggressiveness of human melanoma metastases. Mol Cancer Res.
6:760–769. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shain AH and Bastian BC: From melanocytes
to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Luke JJ, Flaherty KT, Ribas A and Long GV:
Targeted agents and immunotherapies: Optimizing outcomes in
melanoma. Nat Rev Clin Oncol. 14:463–482. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Amann VC, Ramelyte E, Thurneysen S,
Pitocco R, Bentele-Jaberg N, Goldinger SM, Dummer R and Mangana J:
Developments in targeted therapy in melanoma. Eur J Surg Oncol.
43:581–593. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Christiansen SA, Khan S and Gibney GT:
Targeted therapies in combination with immune therapies for the
treatment of metastatic melanoma. Cancer J. 23:59–62. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lang D, Lu MM, Huang L, Engleka KA, Zhang
M, Chu EY, Lipner S, Skoultchi A, Millar SE and Epstein JA: Pax3
functions at a nodal point in melanocyte stem cell differentiation.
Nature. 433:884–887. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bailey CM, Morrison JA and Kulesa PM:
Melanoma revives an embryonic migration program to promote
plasticity and invasion. Pigment Cell Melanoma Res. 25:573–583.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Medic S and Ziman M: PAX3 expression in
normal skin melanocytes and melanocytic lesions (naevi and
melanomas). PLoS One. 5:e99772010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hathaway-Schrader JD, Doonan BP, Hossain
A, Radwan FFY, Zhang L and Haque A: Autophagy-dependent crosstalk
between GILT and PAX-3 influences radiation sensitivity of human
melanoma cells. J Cell Biochem. 119:2212–2221. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Q, Kumar S, Slevin M and Kumar P:
Functional analysis of alternative isoforms of the transcription
factor PAX3 in melanocytes in vitro. Cancer Res. 66:8574–8580.
2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu F, Cao J, Lv J, Dong L, Pier E, Xu GX,
Wang RA, Xu Z, Goding C and Cui R: TBX2 expression is regulated by
PAX3 in the melanocyte lineage. Pigment Cell Melanoma Res.
26:67–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu F, Cao J, Wu J, Sullivan K, Shen J,
Ryu B, Xu Z, Wei W and Cui R: Stat3-targeted therapies overcome the
acquired resistance to vemurafenib in melanomas. J Invest Dermatol.
133:2041–2049. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Smith MP, Ferguson J, Arozarena I, Hayward
R, Marais R, Chapman A, Hurlstone A and Wellbrock C: Effect of
SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J
Natl Cancer Inst. 105:33–46. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bartlett D, Boyle GM, Ziman M and Medic S:
Mechanisms contributing to differential regulation of PAX3
downstream target genes in normal human epidermal melanocytes
versus melanoma cells. PLoS One. 10:e01241542015. View Article : Google Scholar : PubMed/NCBI
|
38
|
He S, Li CG, Slobbe L, Glover A, Marshall
E, Baguley BC and Eccles MR: PAX3 knockdown in metastatic melanoma
cell lines does not reduce MITF expression. Melanoma Res. 21:24–34.
2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
He SJ, Stevens G, Braithwaite AW and
Eccles MR: Transfection of melanoma cells with antisense PAX3
oligonucleotides additively complements cisplatin-induced
cytotoxicity. Mol Cancer Ther. 4:996–1003. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Scholl FA, Kamarashev J, Murmann OV,
Geertsen R, Dummer R and Schäfer BW: PAX3 is expressed in human
melanomas and contributes to tumor cell survival. Cancer Res.
61:823–826. 2001.PubMed/NCBI
|
41
|
Autilio C, Paolillo C, Lavieri MM, Pocino
K, De Paolis E, Di Stasio E, Marchetti P, Gian Carlo CA and
Capoluongo E: PAX3d mRNA over 2.76 copies/µl in the bloodstream
predicts cutaneous malignant melanoma relapse. Oncotarget.
8:85479–85491. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Q, Fang WH, Krupinski J, Kumar S,
Slevin M and Kumar P: Pax genes in embryogenesis and oncogenesis. J
Cell Mol Med. 12:2281–2294. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bondurand N, Pingault V, Goerich DE,
Lemort N, Sock E, Le Caignec C, Wegner M and Goossens M:
Interaction among SOX10, PAX3 and MITF, three genes altered in
Waardenburg syndrome. Hum Mol Genet. 9:1907–1917. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Potterf SB, Furumura M, Dunn KJ, Arnheiter
H and Pavan WJ: Transcription factor hierarchy in Waardenburg
syndrome: Regulation of MITF expression by SOX10 and PAX3. Hum
Genet. 107:1–6. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Watanabe A, Takeda K, Ploplis B and
Tachibana M: Epistatic relationship between Waardenburg syndrome
genes MITF and PAX3. Nat Genet. 18:283–286. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Mascarenhas JB, Littlejohn EL, Wolsky RJ,
Young KP, Nelson M, Salgia R and Lang D: PAX3 and SOX10 activate
MET receptor expression in melanoma. Pigment Cell Melanoma Res.
23:225–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hou L and Pavan WJ: Transcriptional and
signaling regulation in neural crest stem cell-derived melanocyte
development: Do all roads lead to Mitf? Cell Res. 18:1163–1176.
2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Otręba M, Miliński M, Buszman E, Wrześniok
D and Beberok A: Hereditary hypomelanocytoses: The role of PAX3,
SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes. Postepy Hig Med Dosw
(Online). 67:1109–1118. 2013.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
49
|
Pingault V, Ente D, Dastot-Le Moal F,
Goossens M, Marlin S and Bondurand N: Review and update of
mutations causing Waardenburg syndrome. Hum Mutat. 31:391–406.
2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Otręba M, Rok J, Buszman E and Wrześniok
D: Regulation of melanogenesis: The role of cAMP and MITF. Postepy
Hig Med Dosw (Online). 66:33–40. 2012.(In Polish). PubMed/NCBI
|
51
|
Lin JY and Fisher DE: Melanocyte biology
and skin pigmentation. Nature. 445:843–850. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Li WQ, Cho E, Weinstock MA, Mashfiq H and
Qureshi AA: Epidemiological assessments of skin outcomes in the
nurses' health studies. Am J Public Health. 106:1677–1683. 2016.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang M, Qureshi AA, Geller AC, Frazier L,
Hunter DJ and Han J: Use of tanning beds and incidence of skin
cancer. J Clin Oncol. 30:1588–1593. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Li WQ, Qureshi AA, Ma J, Goldstein AM,
Giovannucci EL, Stampfer MJ and Han J: Personal history of prostate
cancer and increased risk of incident melanoma in the United
States. J Clin Oncol. 31:4394–4399. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Nair-Shalliker V, Egger S, Chrzanowska A,
Mason R, Waite L, Le Couteur D, Seibel MJ, Handelsman DJ, Cumming
R, Smith DP and Armstrong BK: Associations between sun sensitive
pigmentary genes and serum prostate specific antigen levels. PLoS
One. 13:e01938932018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chia SE, Wong KY, Cheng C, Lau W and Tan
PH: Sun exposure and the risk of prostate cancer in the singapore
prostate cancer study: A case-control study. Asian Pac J Cancer
Prev. 13:3179–3185. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Nair-Shalliker V, Smith DP, Egger S,
Hughes AM, Kaldor JM, Clements M, Kricker A and Armstrong BK: Sun
exposure may increase risk of prostate cancer in the high UV
environment of New South Wales, Australia: A case-control study.
Int J Cancer. 131:E726–E732. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Bonilla C, Gilbert R, Kemp JP, Timpson NJ,
Evans DM, Donovan JL, Hamdy FC, Neal DE, Fraser WD, Davey SG, et
al: Using genetic proxies for lifecourse sun exposure to assess the
causal relationship of sun exposure with circulating vitamin d and
prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 22:597–606.
2013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Kocarnik JM, Park SL, Han J, Dumitrescu L,
Cheng I, Wilkens LR, Schumacher FR, Kolonel L, Carlson CS, Crawford
DC, et al: Replication of associations between GWAS SNPs and
melanoma risk in the Population Architecture Using Genomics and
Epidemiology (PAGE) Study. J Invest Dermatol. 134:2049–2052. 2014.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Hernando B, Ibarrola-Villava M, Fernandez
LP, Peña-Chilet M, Llorca-Cardeñosa M, Oltra SS, Alonso S, Boyano
MD, Martinez-Cadenas C and Ribas G: Sex-specific genetic effects
associated with pigmentation, sensitivity to sunlight, and melanoma
in a population of Spanish origin. Biol Sex Differ. 7:172016.
View Article : Google Scholar : PubMed/NCBI
|