Anticancer effect of ursolic acid via mitochondria‑dependent pathways (Review)
- Authors:
- Xue‑Min Feng
- Xiu‑Lan Su
-
Affiliations: Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China - Published online on: March 19, 2019 https://doi.org/10.3892/ol.2019.10171
- Pages: 4761-4767
This article is mentioned in:
Abstract
Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vlassenko AG, McConathy J, Couture LE, Su Y, Massoumzadeh P, Leeds HS, Chicoine MR, Tran DD, Huang J, Dahiya S, et al: Aerobic glycolysis as a marker of tumor aggressiveness: Preliminary data in high grade human brain tumors. Dis Markers. 2015:8749042015. View Article : Google Scholar : PubMed/NCBI | |
Lunt SY and Vander Heiden MG: Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alberts B: Molecular biology of the cell. 4th. New York: Garland Science; 2002 | |
Mathupala SP, Ko YH and Pedersen PL: The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 1797:1225–1230. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wajant H: The Fas signaling pathway: More than a paradigm. Science. 296:1635–1636. 2002. View Article : Google Scholar : PubMed/NCBI | |
Desagher S and Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10:369–377. 2000. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Budihardjo I, Zou H, Slaughter C and Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 94:481–490. 1998. View Article : Google Scholar : PubMed/NCBI | |
Jiang X and Wang X: Cytochrome C-mediated apoptosis. Annu Rev Biochem. 73:87–106. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ernster L and Schatz G: Mitochondria: A historical review. J Cell Biol. 91:227s–255s. 1981. View Article : Google Scholar : PubMed/NCBI | |
Hill RA and Connolly JD: Triterpenoids. Nat Prod Rep. 30:1028–1065. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jager S, Trojan H, Kopp T, Laszczyk MN and Scheffler A: Pentacyclic triterpene distribution in various plants-rich sources for a new group of multi-potent plant extracts. Molecules. 14:2016–2031. 2009. View Article : Google Scholar : PubMed/NCBI | |
Szakiel A, Paczkowski C, Pensec F and Bertsch C: Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem Rev. 11:263–284. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wozniak L, Skapska S and Marszalek K: Ursolic Acid-A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 20:20614–20641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kashyap D, Tuli HS and Sharma AK: Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 146:201–213. 2016. View Article : Google Scholar : PubMed/NCBI | |
Santos Rosa C, Garcia Gimenez MD, Saenz Rodriguez MT and De la Puerta Vazquez R: Antihistaminic and antieicosanoid effects of oleanolic and ursolic acid fraction from Helichrysum picardii. Pharmazie. 62:459–462. 2007.PubMed/NCBI | |
Xu T, Wang X, Zhong B, Nurieva RI, Ding S and Dong C: Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORgamma t protein. J Biol Chem. 286:22707–22710. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP and Piao HR: Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett. 28:1797–1803. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Lee HI, Seo KI, Cho HW, Kim MJ, Park EM and Lee MK: Effects of ursolic acid on glucose metabolism, the polyol pathway and dyslipidemia in non-obese type 2 diabetic mice. Indian J Exp Biol. 52:683–691. 2014.PubMed/NCBI | |
Poongunran J, Perera HK, Jayasinghe L, Fernando IT, Sivakanesan R, Araya H and Fujimoto Y: Bioassay-guided fractionation and identification of α-amylase inhibitors from Syzygium cumini leaves. Pharm Biol. 55:206–211. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Yee ST, Kim JJ, Choi MS, Kwon EY, Seo KI and Lee MK: Ursolic acid ameliorates thymic atrophy and hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice. Chem Biol Interact. 188:635–642. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kazmi I, Rahman M, Afzal M, Gupta G, Saleem S, Afzal O, Shaharyar MA, Nautiyal U, Ahmed S and Anwar F: Anti-diabetic potential of ursolic acid stearoyl glucoside: A new triterpenic gycosidic ester from Lantana camara. Fitoterapia. 83:142–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang YL, Wang ZJ, Shen HL, Yin M and Tang KX: Effects of artesunate and ursolic acid on hyperlipidemia and its complications in rabbit. Eur J Pharm Sci. 50:366–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sundaresan A, Radhiga T and Pugalendi KV: Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice. Eur J Pharmacol. 741:297–303. 2014. View Article : Google Scholar : PubMed/NCBI | |
Seo DY, Lee SR, Heo JW, No MH, Rhee BD, Ko KS, Kwak HB and Han J: Ursolic acid in health and disease. Korean J Physiol Pharmacol. 22:235–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA and Adams CM: Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One. 7:e393322012. View Article : Google Scholar : PubMed/NCBI | |
Ma JQ, Ding J, Zhang L and Liu CM: Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway. Clin Res Hepatol Gastroenterol. 39:188–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hollosy F, Idei M, Csorba G, Szabó E, Bökönyi G, Seprödi A, Mészáros G, Szende B and Kéri G: Activation of caspase-3 protease during the process of ursolic acid and its derivative-induced apoptosis. Anticancer Res. 21:3485–3491. 2001.PubMed/NCBI | |
Wu CC, Huang YF, Hsieh CP, Chueh PJ and Chen YL: Combined use of zoledronic acid augments ursolic Acid-induced apoptosis in human osteosarcoma cells through enhanced oxidative stress and autophagy. Molecules. 21(pii): E16402016. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Chi T, Li T, Zheng G, Fan L, Liu Y, Chen X, Chen S, Jia L and Shao JW: Correction: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: Suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways. Nanoscale. 10:6212–6213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li X, Ding J, Xu H, Dai X, Hou Z, Zhang K, Sun K and Sun W: Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int J Pharm. 441:261–268. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harmand PO, Duval R, Liagre B, Jayat-Vignoles C, Beneytout JL, Delage C and Simon A: Ursolic acid induces apoptosis through caspase-3 activation and cell cycle arrest in HaCat cells. Int J Oncol. 23:105–112. 2003.PubMed/NCBI | |
Cha HJ, Park MT, Chung HY, Kim ND, Sato H, Seiki M and Kim KW: Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells. Oncogene. 16:771–778. 1998. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Hu YL and Wang H: Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy, and apoptosis and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp Ther Med. 14:3623–3631. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A and Wnuk M: Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis. 22:800–815. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yeh CT, Wu CH and Yen GC: Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res. 54:1285–1295. 2010. View Article : Google Scholar : PubMed/NCBI | |
Subbaramaiah K, Michaluart P, Sporn MB and Dannenberg AJ: Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Res. 60:2399–2404. 2000.PubMed/NCBI | |
Liu L, Zhang J, Li M, Zhang X, Li Z, Wang L, Wu J and Luo C: Inhibition of HepG2 cell proliferation by ursolic acid and polysaccharides via the downregulation of cyclooxygenase-2. Mol Med Rep. 9:2505–2511. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tian Z, Lin G, Zheng RX, Huang F, Yang MS and Xiao PG: Anti-hepatoma activity and mechanism of ursolic acid and its derivatives isolated from Aralia decaisneana. World J Gastroenterol. 12:874–879. 2006. View Article : Google Scholar : PubMed/NCBI | |
Limami Y, Pinon A, Leger DY, Pinault E, Delage C, Beneytout JL, Simon A and Liagre B: The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie. 94:1754–1763. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang HC, Huang CY, Lin-Shiau SY and Lin JK: Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog. 48:517–531. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang F, Yang L, Mei Y, Long H, Zhang X, Zhang J, Qimuge S and Su X: Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo. J Biomed Biotechnol. 2011:4193432011. View Article : Google Scholar : PubMed/NCBI | |
Li R, Wang X, Zhang XH, Chen HH and Liu YD: Ursolic acid promotes apoptosis of SGC-7901 gastric cancer cells through ROCK/PTEN mediated mitochondrial translocation of cofilin-1. Asian Pac J Cancer Prev. 15:9593–9597. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Ji Q, Tang Y, Chen T, Pan G, Hu S, Bao Y, Peng W and Yin P: Mitochondrial translocation of cofilin-1 promotes apoptosis of gastric cancer BGC-823 cells induced by ursolic acid. Tumour Biol. 35:2451–2459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Lu YH, Xie JH, Wang F, Zou JN, Yang JS, Xing YY and Xi T: Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs. 20:249–258. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cheng TL, Liao CC, Tsai WH, Lin CC, Yeh CW, Teng CF and Chang WT: Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J Cell Biochem. 107:1002–1015. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wilson JE: Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pedersen PL, Mathupala S, Rempel A, Geschwind JF and Ko YH: Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta. 1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mathupala SP, Ko YH and Pedersen PL: Hexokinase-2 bound to mitochondria: Cancer's stygian link to the ‘Warburg Effect’ and a pivotal target for effective therapy. Semin Cancer Biol. 19:17–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shoshan-Barmatz V, Zakar M, Rosenthal K and Abu-Hamad S: Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Biochim Biophys Acta. 1787:421–430. 2009. View Article : Google Scholar : PubMed/NCBI | |
Duval RE, Harmand PO, Jayat-Vignoles C, Cook-Moreau J, Pinon A, Delage C and Simon A: Differential involvement of mitochondria during ursolic acid-induced apoptotic process in HaCaT and M4Beu cells. Oncol Rep. 19:145–149. 2008.PubMed/NCBI | |
Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G and Bishayee A: Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochem Pharmacol. 85:1579–1587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Gao J, Chen J, Fang F, Wang Y, Dou H, Xu Q and Qian Z: Inhibition by [corrected] ursolic acid of [corrected] calcium-induced mitochondrial permeability transition and release of two proapoptotic proteins. Biochem Biophys Res Commun. 337:320–324. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shyu MH, Kao TC and Yen GC: Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem. 58:6110–6118. 2010. View Article : Google Scholar : PubMed/NCBI | |
Saraswati S, Agrawal SS and Alhaider AA: Ursolic acid inhibits tumor angiogenesis and induces apoptosis through mitochondrial-dependent pathway in Ehrlich ascites carcinoma tumor. Chem Biol Interact. 206:153–165. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Jiang Z, Xiang L, Li Y, Ou M, Yang X, Shao J, Lu Y, Lin L, Chen J, et al: Synergism of ursolic acid derivative US597 with 2-deoxy-D-glucose to preferentially induce tumor cell death by dual-targeting of apoptosis and glycolysis. Sci Rep. 4:50062014. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Yang X, Xie J, Xiang L, Li Y, Ou M, Chi T, Liu Z, Yu S, Gao Y, et al: UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma. Biochem Pharmacol. 93:151–162. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Branicky R, Noe A and Hekimi S: Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 217:1915–1928. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sabharwal SS and Schumacker PT: Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nat Rev Cancer. 14:709–721. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shadel GS and Horvath TL: Mitochondrial ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tu HY, Huang AM, Wei BL, Gan KH, Hour TC, Yang SC, Pu YS and Lin CN: Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species. Bioorg Med Chem. 17:7265–7274. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim KH, Seo HS, Choi HS, Choi I, Shin YC and Ko SG: Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch Pharm Res. 34:1363–1372. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R and Jacks T: Restoration of p53 function leads to tumour regression in vivo. Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hollstein M, Sidransky D, Vogelstein B and Harris CC: p53 mutations in human cancers. Science. 253:49–53. 1991. View Article : Google Scholar : PubMed/NCBI | |
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F and Hwang PM: p53 regulates mitochondrial respiration. Science. 312:1650–1653. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kruse JP and Gu W: p53 aerobics: The major tumor suppressor fuels your workout. Cell Metab. 4:1–3. 2006. View Article : Google Scholar : PubMed/NCBI | |
Heffernan-Stroud LA, Helke KL, Jenkins RW, De Costa AM, Hannun YA and Obeid LM: Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene. 31:1166–1175. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nam H and Kim MM: Ursolic acid induces apoptosis of SW480 cells via p53 activation. Food Chem Toxicol. 62:579–583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Song X, Yin S, Zhao C, Fan L and Hu H: p21 induction plays a dual role in anti-cancer activity of ursolic acid. Exp Biol Med (Maywood). 241:501–508. 2016. View Article : Google Scholar : PubMed/NCBI | |
Manu KA and Kuttan G: Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol. 8:974–981. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu YX, Gu ZL, Yin JL, Chou WH, Kwok CY, Qin ZH and Liang ZQ: Ursolic acid induces human hepatoma cell line SMMC-7721 apoptosis via p53-dependent pathway. Chin Med J (Engl). 123:1915–1923. 2010.PubMed/NCBI |