1
|
Porru M, Pompili L, Caruso C, Biroccio A
and Leonetti C: Targeting KRAS in metastatic colorectal cancer:
Current strategies and emerging opportunities. J Exp Clin Cancer
Res. 37:572018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Horsch M, Recktenwald CV, Schädler S,
Hrabé de Angelis M, Seliger B and Beckers J: Overexpressed vs
mutated Kras in murine fibroblasts: A molecular phenotyping study.
Br J Cancer. 100:656–662. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Heinemann V, Stintzing S, Kirchner T,
Boeck S and Jung A: Clinical relevance of EGFR- and KRAS-status in
colorectal cancer patients treated with monoclonal antibodies
directed against the EGFR. Cancer Treat Rev. 35:262–271. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Di Nicolantonio F, Martini M, Molinari F,
Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L,
Frattini M, Siena S and Bardelli A: Wild-type BRAF is required for
response to panitumumab or cetuximab in metastatic colorectal
cancer. J Clin Oncol. 26:5705–5712. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Baas JM, Krens LL, Guchelaar HJ, Morreau H
and Gelderblom H: Concordance of predictive markers for EGFR
inhibitors in primary tumors and metastases in colorectal cancer: A
review. Oncologist. 16:1239–1249. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Prior IA, Lewis PD and Mattos C: A
comprehensive survey of Ras mutations in cancer. Cancer Res.
72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Stengel KR and Zheng Y: Essential role of
Cdc42 in Ras-induced transformation revealed by gene targeting.
PLoS One. 7:e373172012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guerrero S, Casanova I, Farré L, Mazo A,
Capellà G and Mangues R: K-ras codon 12 mutation induces higher
level of resistance to apoptosis and predisposition to
anchorage-independent growth than codon 13 mutation or
proto-oncogene overexpression. Cancer Res. 60:6750–6756.
2000.PubMed/NCBI
|
9
|
Seeburg PH, Colby WW, Capon DJ, Goeddel DV
and Levinson AD: Biological properties of human c-Ha-ras1 genes
mutated at codon 12. Nature. 312:71–75. 1984. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shankaran V, Obel J and Benson AB III:
Predicting response to EGFR inhibitors in metastatic colorectal
cancer: Current practice and future directions. Oncologist.
15:157–167. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao B, Wang L, Qiu H, Zhang M, Sun L,
Peng P, Yu Q and Yuan X: Mechanisms of resistance to anti-EGFR
therapy in colorectal cancer. Oncotarget. 8:3980–4000.
2017.PubMed/NCBI
|
12
|
van Krieken JH, Jung A, Kirchner T,
Carneiro F, Seruca R, Bosman FT, Quirke P, Fléjou JF, Plato Hansen
T, de Hertogh G, et al: KRAS mutation testing for predicting
response to anti-EGFR therapy for colorectal carcinoma: Proposal
for an European quality assurance program. Virchows Arch.
453:417–431. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Therkildsen C, Bergmann TK,
Henrichsen-Schnack T, Ladelund S and Nilbert M: The predictive
value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment
in metastatic colorectal cancer: A systematic review and
meta-analysis. Acta Oncol. 53:852–864. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zulhabri O, Rahman J, Ismail S, Isa MR and
Wan Zurinah WN: Predominance of G to A codon 12 mutation K-ras gene
in Dukes' B colorectal cancer. Singapore Med J. 53:26–31.
2012.PubMed/NCBI
|
15
|
Frattini M, Saletti P, Romagnani E, Martin
V, Molinari F, Ghisletta M, Camponovo A, Etienne LL, Cavalli F and
Mazzucchelli L: PTEN loss of expression predicts cetuximab efficacy
in metastatic colorectal cancer patients. Br J Cancer.
97:1139–1145. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Elbjeirami WM and Sughayer MA: KRAS
mutations and subtyping in colorectal cancer in Jordanian patients.
Oncol Lett. 4:705–710. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guo F, Gong H, Zhao H, Chen J, Zhang Y,
Zhang L, Shi X, Zhang A, Jin H, Zhang J and He Y: Mutation status
and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese
colorectal cancer patients. Sci Rep. 8:60762018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tong JH, Lung RW, Sin FM, Law PP, Kang W,
Chan AW, Ma BB, Mak TW, Ng SS and To KF: Characterization of rare
transforming KRAS mutations in sporadic colorectal cancer. Cancer
Biol Ther. 15:768–776. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bamford S, Dawson E, Forbes S, Clements J,
Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR
and Wooster R: The COSMIC (Catalogue of Somatic Mutations in
Cancer) database and website. Br J Cancer. 91:355–358. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Pai EF, Krengel U, Petsko GA, Goody RS,
Kabsch W and Wittinghofer A: Refined crystal structure of the
triphosphate conformation of H-ras p21 at 1.35 A resolution:
Implications for the mechanism of GTP hydrolysis. EMBO J.
9:2351–2359. 1990. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schindelin J, Arganda-Carreras I, Frise E,
Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al: Fiji: An open-source platform for biological-image
analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Adzhubei IA, Schmidt S, Peshkin L,
Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A
method and server for predicting damaging missense mutations. Nat
Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kumar P, Henikoff S and Ng PC: Predicting
the effects of coding non-synonymous variants on protein function
using the SIFT algorithm. Nat Protoc. 4:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Reva B, Antipin Y and Sander C: Predicting
the functional impact of protein mutations: Application to cancer
genomics. Nucleic Acids Res. 39:e1182011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Billones JB, Carrillo MC, Organo VG, Sy
JB, Clavio NA, Macalino SJ, Emnacen IA, Lee AP, Ko PK and
Concepcion GP: In silico discovery and in vitro activity of
inhibitors against Mycobacterium tuberculosis 7,8-diaminopelargonic
acid synthase (Mtb BioA). Drug Des Devel Ther. 11:563–574. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu G, Robertson DH, Brooks CL III and
Vieth M: Detailed analysis of grid-based molecular docking: A case
study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput
Chem. 24:1549–1562. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yilmaz M and Christofori G: EMT, the
cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.
28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Der CJ: The ras family of oncogenes.
Cancer Treat Res. 47:73–119. 1989. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fernández-Medarde A and Santos E: Ras in
cancer and developmental diseases. Genes Cancer. 2:344–358. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Tojkander S, Gateva G and Lappalainen P:
Actin stress fibers-assembly, dynamics and biological roles. J Cell
Sci. 125:1855–1864. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang SH, Yates PR, Whitmarsh AJ, Davis RJ
and Sharrocks AD: The Elk-1 ETS-domain transcription factor
contains a mitogen-activated protein kinase targeting motif. Mol
Cell Biol. 18:710–720. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cruzalegui FH, Cano E and Treisman R: ERK
activation induces phosphorylation of Elk-1 at multiple S/T-P
motifs to high stoichiometry. Oncogene. 18:7948–7957. 1999.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Hunter JC, Manandhar A, Carrasco MA,
Gurbani D, Gondi S and Westover KD: Biochemical and structural
analysis of common cancer-associated KRAS mutations. Mol Cancer
Res. 13:1325–1335. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dagogo-Jack I and Shaw AT: Tumour
heterogeneity and resistance to cancer therapies. Nat Rev Clin
Oncol. 15:81–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yap TA, Gerlinger M, Futreal PA, Pusztai L
and Swanton C: Intratumor heterogeneity: Seeing the wood for the
trees. Sci Transl Med. 4:127ps102012. View Article : Google Scholar : PubMed/NCBI
|
36
|
McGranahan N and Swanton C: Biological and
therapeutic impact of intratumor heterogeneity in cancer evolution.
Cancer Cell. 27:15–26. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Janakiraman M, Vakiani E, Zeng Z, Pratilas
CA, Taylor BS, Chitale D, Halilovic E, Wilson M, Huberman K,
Ricarte Filho JC, et al: Genomic and biological characterization of
exon 4 KRAS mutations in human cancer. Cancer Res. 70:5901–5911.
2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Smith G, Bounds R, Wolf H, Steele RJ,
Carey FA and Wolf CR: Activating K-Ras mutations outwith ‘hotspot’
codons in sporadic colorectal tumours-implications for personalised
cancer medicine. Br J Cancer. 102:693–703. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tejpar S, Lenz HJ, Köhne CH, Heinemann V,
Ciardiello F, Beier RE, Stroh C, Duecker K and Bokemeyer C: Effect
of KRAS and NRAS mutations on treatment outcomes in patients with
metastatic colorectal cancer (mCRC) treated first-line with
cetuximab plus FOLFOX4: New results from the OPUS study. J Clin
Oncol. 32:LBA4442017. View Article : Google Scholar
|
40
|
Misale S, Di Nicolantonio F,
Sartore-Bianchi A, Siena S and Bardelli A: Resistance to anti-EGFR
therapy in colorectal cancer: From heterogeneity to convergent
evolution. Cancer Discov. 4:1269–1280. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Murtaza BN, Bibi A, Nadeem MS, Chaudri MS
and Shakoori A: Identification of a novel mutation in codon 31 of
Kirstein rat sarcoma viral oncogene homologue in colon cancer:
Another evidence of non-canonical mutational pathway. Pakistan J
Zool. 44:1671–1676. 2012.
|
42
|
Cyniak-Magierska A, Brzeziańska E,
Januszkiewicz-Caulier J, Jarzab B and Lewinski A: Prevalence of RAS
point mutations in papillary thyroid carcinoma; a novel mutation at
codon 31 of K-RAS. Exp Clin Endocrinol Diabetes. 115:594–599. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Lin SR, Tsai JH, Yang YC and Lee SC:
Mutations of K-ras oncogene in human adrenal tumours in Taiwan. Br
J Cancer. 77:1060–1065. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Willumsen BM, Norris K, Papageorge AG,
Hubbert NL and Lowy DR: Harvey murine sarcoma virus p21 ras
protein: biological and biochemical significance of the cysteine
nearest the carboxy terminus. EMBO J. 3:2581–2585. 1984. View Article : Google Scholar : PubMed/NCBI
|
45
|
Thorgeirsson UP, Turpeenniemi-Hujanen T,
Williams JE, Westin EH, Heilman CA, Talmadge JE and Liotta LA:
NIH/3T3 cells transfected with human tumor DNA containing activated
ras oncogenes express the metastatic phenotype in nude mice. Mol
Cell Biol. 5:259–262. 1985. View Article : Google Scholar : PubMed/NCBI
|
46
|
Papageorge AG, Willumsen BM, Johnsen M,
Kung HF, Stacey DW, Vass WC and Lowy DR: A transforming ras gene
can provide an essential function ordinarily supplied by an
endogenous ras gene. Mol Cell Biol. 6:1843–1846. 1986. View Article : Google Scholar : PubMed/NCBI
|
47
|
DeFeo-Jones D, Tatchell K, Robinson LC,
Sigal IS, Vass WC, Lowy DR and Scolnick EM: Mammalian and yeast ras
gene products: Biological function in their heterologous systems.
Science. 228:179–184. 1985. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cheng CM, Li H, Gasman S, Huang J, Schiff
R and Chang EC: Compartmentalized Ras proteins transform NIH 3T3
cells with different efficiencies. Mol Cell Biol. 31:983–997. 2011.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Garrett CT and Sell S: Cellular cancer
markers. Humana Press. (Totowa, NJ). 12. 455–477. 1995.
|
50
|
Hynes NE and Lane HA: ERBB receptors and
cancer: The complexity of targeted inhibitors. Nat Rev Cancer.
5:341–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Pirkmajer S and Chibalin AV: Serum
starvation: Caveat emptor. Am J Physiol Cell Physiol.
301:C272–C279. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chen RH, Abate C and Blenis J:
Phosphorylation of the c-Fos transrepression domain by
mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase.
Proc Natl Acad Sci USA. 90:10952–10956. 1993. View Article : Google Scholar : PubMed/NCBI
|
53
|
Morton S, Davis RJ, McLaren A and Cohen P:
A reinvestigation of the multisite phosphorylation of the
transcription factor c-Jun. EMBO J. 22:3876–3886. 2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Reszka AA, Seger R, Diltz CD, Krebs EG and
Fischer EH: Association of mitogen-activated protein kinase with
the microtubule cytoskeleton. Proc Natl Acad Sci USA. 92:8881–8885.
1995. View Article : Google Scholar : PubMed/NCBI
|
55
|
Northwood IC, Gonzalez FA, Wartmann M,
Raden DL and Davis RJ: Isolation and characterization of two growth
factor-stimulated protein kinases that phosphorylate the epidermal
growth factor receptor at threonine 669. J Biol Chem.
266:15266–15276. 1991.PubMed/NCBI
|
56
|
Hong S, Kim S, Kim HY, Kang M, Jang HH and
Lee WS: Targeting the PI3K signaling pathway in KRAS mutant colon
cancer. Cancer Med. 5:248–255. 2016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Martin TD, Samuel JC, Routh ED, Der CJ and
Yeh JJ: Activation and involvement of Ral GTPases in colorectal
cancer. Cancer Res. 71:206–215. 2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Chen CC, Er TK, Liu YY, Hwang JK, Barrio
MJ, Rodrigo M, Garcia-Toro E and Herreros-Villanueva M:
Computational analysis of KRAS mutations: Implications for
different effects on the KRAS p.G12D and p.G13D mutations. PLoS
One. 8:e557932013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Jaffe AB, Aspenstrom P and Hall A: Human
CNK1 acts as a scaffold protein, linking Rho and Ras signal
transduction pathways. Mol Cell Biol. 24:1736–1746. 2004.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Nguyen A, Burack WR, Stock JL, Kortum R,
Chaika OV, Afkarian M, Muller WJ, Murphy KM, Morrison DK, Lewis RE,
et al: Kinase suppressor of Ras (KSR) is a scaffold which
facilitates mitogen-activated protein kinase activation in vivo.
Mol Cell Biol. 22:3035–3045. 2002. View Article : Google Scholar : PubMed/NCBI
|
61
|
Matsunaga-Udagawa R, Fujita Y, Yoshiki S,
Terai K, Kamioka Y, Kiyokawa E, Yugi K, Aoki K and Matsuda M: The
scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and
Raf. J Biol Chem. 285:7818–7826. 2010. View Article : Google Scholar : PubMed/NCBI
|
62
|
Adzhubei I, Jordan DM and Sunyaev SR:
Predicting functional effect of human missense mutations using
PolyPhen-2. Curr Protoc Hum Genet. Chapter 7: Unit7.20 2013 doi:
10.1002/0471142905.hg0720s76. PubMed/NCBI
|