Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer (Review)
- Authors:
- Kanwal Ahmed
- Syed Faisal Zaidi
- Zheng‑Guo Cui
- Dejun Zhou
- Sheikh Abdul Saeed
- Hidekuni Inadera
-
Affiliations: Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia, Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan, Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China - Published online on: May 13, 2019 https://doi.org/10.3892/ol.2019.10349
- Pages: 487-498
-
Copyright: © Ahmed et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66:683–691. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang TY and Niu XC: Increased plasma levels of pentraxin 3 are associated with poor prognosis of colorectal carcinoma patients. Tohoku J Exp Med. 240:39–46. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Terzić J, Grivennikov S, Karin E and Karin M: Inflammation and colon cancer. Gastroenterology. 138:2101–2114.e5. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hafström L, Johansson H and Ahlberg J: Does diagnostic delay of colorectal cancer result in malpractice claims? A retrospective analysis of the Swedish board of malpractice from 1995–2008. Patient Saf Surg. 6:132012. View Article : Google Scholar : PubMed/NCBI | |
Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lao VV and Grady WM: Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 8:686–700. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pino MS and Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 138:2059–2072. 2010. View Article : Google Scholar : PubMed/NCBI | |
Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R and Vodicka P: Mutations and polymorphisms in TP53 gene--an overview on the role in colorectal cancer. Mutagenesis. 27:211–218. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Wu MY, Zhang DX, Yang YM, Wang BS, Zhang J, Xu J, Zhong WD and Hu JN: Synergistic anticancer effect of exogenous wild-type p53 gene combined with 5-FU in human colon cancer resistant to 5-FU in vivo. World J Gastroenterol. 22:7342–7352. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bykov VJN, Eriksson SE, Bianchi J and Wiman KG: Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 18:89–102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Testa U, Pelosi E and Castelli G: Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel). 6:1–113. 2018. | |
Wang S, Liu Z, Wang L and Zhang X: NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 6:327–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI | |
PerŠe M: Oxidative Stress in the Pathogenesis of Colorectal Cancer: Cause or Consequence? BioMed Res Int. 7257102013.PubMed/NCBI | |
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A: Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017:84167632017. View Article : Google Scholar : PubMed/NCBI | |
Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pébusque MJ, et al: Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res. 69:219–226. 2009. View Article : Google Scholar : PubMed/NCBI | |
Flöter J, Kaymak I and Schulze A: Regulation of Metabolic Activity by p53. Metabolites. 7:1–18. 2017. View Article : Google Scholar | |
Kalo E, Kogan-Sakin I, Solomon H, Bar-Nathan E, Shay M, Shetzer Y, Dekel E, Goldfinger N, Buganim Y, Stambolsky P, et al: Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci. 125:5578–5586. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C and Feng Z: Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai). 46:170–179. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ahmed K, Tabuchi Y and Kondo T: Hyperthermia: An effective strategy to induce apoptosis in cancer cells. Apoptosis. 20:1411–1419. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao K and Tait SWG: Apoptosis and Cancer: Force Awakens, Phantom Menace, or Both? Int Rev Cell Mol Biol. 337:135–152. 2018. View Article : Google Scholar : PubMed/NCBI | |
El-Khattouti A, Selimovic D, Haikel Y and Hassan M: Crosstalk between apoptosis and autophagy: Molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 6:37–55. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chaitanya GV, Steven AJ and Babu PP: PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 8:312010. View Article : Google Scholar : PubMed/NCBI | |
Shiraishi H, Okamoto H, Yoshimura A and Yoshida H: ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci. 119:3958–3966. 2006. View Article : Google Scholar : PubMed/NCBI | |
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M and Ron D: Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 6:1099–1108. 2000. View Article : Google Scholar : PubMed/NCBI | |
McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ: Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 21:1249–1259. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA and Yuan J: Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, Bredesen DE and Ellerby HM: Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem. 277:21836–21842. 2002. View Article : Google Scholar : PubMed/NCBI | |
Abraha AM and Ketema EB: Apoptotic pathways as a therapeutic target for colorectal cancer treatment. World J Gastrointest Onco. 8:583–591. 2016. View Article : Google Scholar | |
Stoian M, State N, Stoica V and Radulian G: Apoptosis in colorectal cancer. J Med Life. 7:160–164. 2014.PubMed/NCBI | |
Zhang B, Fang C, Deng D and Xia L: Research progress on common adverse events caused by targeted therapy for colorectal cancer. Oncol Lett. 16:27–33. 2018.(review). PubMed/NCBI | |
Lee JH, Khor TO, Shu L, Su ZY, Fuentes F and Kong AN: Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 137:153–171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zaidi SF, Ahmed K, Saeed SA, Khan U and Sugiyama T: Can diet modulate helicobacter pylori associated gastric pathogenesis? An evidence-based analysis. Nutr Cancer. 69:979–989. 2017. View Article : Google Scholar : PubMed/NCBI | |
Newman DJ and Cragg GM: Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 75:311–335. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E and Capaccioli S: Natural compounds for cancer treatment and prevention. Pharmacol Res. 59:365–378. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rejhová A, Opattová A, Čumová A, Slíva D and Vodička P: Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 144:582–594. 2018. View Article : Google Scholar : PubMed/NCBI | |
González-Vallinas M, González-Castejón M, Rodríguez-Casado A and Ramírez de Molina A: Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr Rev. 71:585–599. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee KW, Bode AM and Dong Z: Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer. 11:211–218. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fung TT, Hu FB, Wu K, Chiuve SE, Fuchs CS and Giovannucci E: The mediterranean and dietary approaches to stop hypertension (DASH) diets and colorectal cancer. Am J Clin Nutr. 92:1429–1435. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nomura AMY, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Pike MC and Kolonel LN: Association of vegetable, fruit, and grain intakes with colorectal cancer: The Multiethnic Cohort Study. Am J Clin Nutr. 88:730–737. 2008. View Article : Google Scholar : PubMed/NCBI | |
van Duijnhoven FJ, Bueno-De-Mesquita HB, Ferrari P, Jenab M, Boshuizen HC, Ros MM, Casagrande C, Tjønneland A, Olsen A, Overvad K, et al: Fruit, vegetables, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 89:1441–1452. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gunasekaran S, Venkatachalam K and Namasivayam N: p-Methoxycinnamic acid, an active phenylpropanoid induces mitochondrial mediated apoptosis in HCT-116 human colon adenocarcinoma cell line. Environ Toxicol Pharmacol. 40:966–974. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yaffe PB, Doucette CD, Walsh M and Hoskin DW: Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp Mol Pathol. 94:109–114. 2013. View Article : Google Scholar : PubMed/NCBI | |
Banerjee K and Mandal M: Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells. Redox Biol. 5:153–162. 2015. View Article : Google Scholar : PubMed/NCBI | |
Watson JL, Hill R, Yaffe PB, Greenshields A, Walsh M, Lee PW, Giacomantonio CA and Hoskin DW: Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer Lett. 297:1–8. 2010. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Shrivastav A and Sharma RK: Curcumin induces caspase and calpain-dependent apoptosis in HT29 human colon cancer cells. Mol Med Rep. 2:627–631. 2009.PubMed/NCBI | |
Liu B, Yuan B, Zhang L, Mu W and Wang C: ROS/p38/p53/Puma signaling pathway is involved in emodin-induced apoptosis of human colorectal cancer cells. Int J Clin Exp Med. 8:15413–15422. 2015.PubMed/NCBI | |
Raja SB, Rajendiran V, Kasinathan NK, P A, Venkatabalasubramanian S, Murali MR, Devaraj H and Devaraj SN: Differential cytotoxic activity of Quercetin on colonic cancer cells depends on ROS generation through COX-2 expression. Food Chem Toxicol 106 (Pt A). 92–106. 2017. View Article : Google Scholar | |
Kwon O, Soung NK, Thimmegowda NR, Jeong SJ, Jang JH, Moon DO, Chung JK, Lee KS, Kwon YT, Erikson RL, et al: Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal. 24:943–950. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miki H, Uehara N, Kimura A, Sasaki T, Yuri T, Yoshizawa K and Tsubura A: Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol. 40:1020–1028. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han MH, Kim GY, Yoo YH and Choi YH: Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol Lett. 220:157–166. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li M, Song LH, Yue GG, Lee JKM, Zhao LM, Li L, Zhou X, Tsui SK, Ng SS, Fung KP, et al: Bigelovin triggered apoptosis in colorectal cancer in vitro and in vivo via upregulating death receptor 5 and reactive oxidative species. Sci Rep. 7:42176–42188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shang HS, Liu JY, Lu HF, Chiang HS, Lin CH, Chen A, Lin YF, Chung JG, Ng SS, et al: Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells. Environ Toxicol. 32:2041–2052. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sithara T, Arun KB, Syama HP, Reshmitha TR and Nisha P: Morin inhibits proliferation of sw480 colorectal cancer cells by inducing apoptosis mediated by reactive oxygen species formation and uncoupling of Warburg effect. Front Pharmacol. 8:6402017. View Article : Google Scholar : PubMed/NCBI | |
Khamphio M, Barusrux S and Weerapreeyakul N: Sesamol induces mitochondrial apoptosis pathway in HCT116 human colon cancer cells via pro-oxidant effect. Life Sci. 158:46–56. 2016. View Article : Google Scholar : PubMed/NCBI | |
Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E and Muhamad II: Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 22:3952–3961. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim JH, Lee YM, Park SR, Kim DH and Lim BO: Anticancer activity of hispidin via reactive oxygen species-mediated apoptosis in colon cancer cells. Anticancer Res. 34:4087–4093. 2014.PubMed/NCBI | |
Waziri PM, Abdullah R, Yeap SK, Omar AR, Kassim NK, Malami I, How CW, Etti IC and Abu ML: Clausenidin induces caspase-dependent apoptosis in colon cancer. BMC Complement Altern Med. 16:2562016. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Xu Y and Peng W: Colchicine induces apoptosis in HT-29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways. Mol Med Rep. 12:5939–5944. 2015. View Article : Google Scholar : PubMed/NCBI | |
Santos LS, Silva VR, Menezes LRA, Soares MBP, Costa EV and Bezerra DP: Xylopine induces oxidative stress and causes G2/M phase arrest, triggering caspase-mediated apoptosis by p53-independent pathway in HCT116 cells. Oxid Med Cell Longev. 2017:71268722017. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Zheng Z, Lee MH, Xu Y, Kang S, Dong Z, Wang M, Gu Z, Li H and Chen W: Chemoprevention of Colorectal Cancer by Artocarpin, a Dietary Phytochemical from Artocarpus heterophyllus. J Agric Food Chem. 65:3474–3480. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaur M, Velmurugan B, Tyagi A, Deep G, Katiyar S, Agarwal C and Agarwal R: Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Mol Cancer Ther. 8:2366–2374. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yaffe PB, Power Coombs MR, Doucette CD, Walsh M and Hoskin DW: Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog. 54:1070–1085. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Zhang X, Zhang W and Rengarajan T: Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des Devel Ther. 12:1303–1310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dasiram JD, Ganesan R, Kannan J, Kotteeswaran V and Sivalingam N: Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells. Biomed Pharmacother. 86:373–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agarwal A, Kasinathan A, Ganesan R, Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB and Sivalingam N: Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res. 51:67–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Zhou Z, Zhou W, Liu J, Zhang Q, Xia J, Liu J, Chen N, Li M and Zhu R: Resveratrol inhibits proliferation in human colorectal carcinoma cells by inducing G1/S-phase cell cycle arrest and apoptosis through caspase/cyclin-CDK pathways. Mol Med Rep. 10:1697–1702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eldhose B, Gunawan M, Rahman M, Latha MS and Notario V: Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis. Int J Oncol. 45:1913–1920. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Park JH and Kim JK: Cucurbitacin-I, a natural cell-permeable triterpenoid isolated from Cucurbitaceae, exerts potent anticancer effect in colon cancer. Chem Biol Interact. 219:1–8. 2014. View Article : Google Scholar : PubMed/NCBI | |
Amin A, Bajbouj K, Koch A, Gandesiri M and Schneider-Stock R: Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci. 16:1544–1561. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li CY, Huang WF, Wang QL, Wang F, Cai E, Hu B, Du JC, Wang J, Chen R, Cai XJ, et al: Crocetin induces cytotoxicity in colon cancer cells via p53-independent mechanisms. Asian Pac J Cancer Prev. 13:3757–3761. 2012. View Article : Google Scholar : PubMed/NCBI | |
74. Lee YJ, Kang YR, Lee SY, Jin Y, Han DC and Kwon BM: Ginkgetin induces G2-phase arrest in HCT116 colon cancer cells through the modulation of b-Myb and miRNA34a expression. Int J Oncol. 51:1331–1342. 2017. View Article : Google Scholar : PubMed/NCBI | |
Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AKT, Soniya EV and Anto RJ: [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One. 9:e1044012014. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu H, Wang H, Guo S and Hisamitsu T: Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Mol Med Rep. 14:4559–4566. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cho HJ and Park JHY: Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. J Cancer Prev. 18:257–263. 2013. View Article : Google Scholar : PubMed/NCBI | |
López de Las Hazas MC, Piñol C, Macià A and Motilva MJ: Hydroxytyrosol and the colonic metabolites derived from virgin olive oil intake induce cell cycle arrest and apoptosis in colon cancer cells. J Agric Food Chem. 65:6467–6476. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee SH and Clark R: Anti-Tumorigenic Effects of Capsaicin in Colon Cancer. J Food Chem Nanotechnol. 2:162–167. 2016. View Article : Google Scholar | |
Jin J, Lin G, Huang H, Xu D, Yu H, Ma X, Zhu L, Ma D and Jiang H: Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53. Int J Biol Sci. 10:285–295. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chidambara Murthy KN, Jayaprakasha GK and Patil BS: The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol. 688:14–21. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu LN, Lu BN, Hu MM, Xu YW, Han X, Qi Y and Peng JY: Mechanisms involved in the cytotoxic effects of berberine on human colon cancer HCT-8 cells. Biocell. 36:113–120. 2012.PubMed/NCBI | |
Cai Y, Xia Q, Luo R, Huang P, Sun Y, Shi Y and Jiang W: Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J Nat Med. 68:53–62. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Li Q, Liu Z, Lin L, Zhang X, Cao M and Jiang J: Harmine induces cell cycle arrest and mitochondrial pathway-mediated cellular apoptosis in SW620 cells via inhibition of the Akt and ERK signaling pathways. Oncol Rep. 35:3363–3370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tailor D and Singh RP: Dietary and non-dietary phytochemicals in cancer control. Nutrition, Diet and Cancer. Shankar S and Shrivastava RK: Springer. (New York). 585–622. 2012. View Article : Google Scholar | |
Milani A, Basirnejad M, Shahbazi S and Bolhassani A: Carotenoids: Biochemistry, pharmacology and treatment. Br J Pharmacol. 174:1290–1324. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gutheil WG, Reed G, Ray A, Anant S and Dhar A: Crocetin: An agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol. 13:173–179. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ray P, Guha D, Chakraborty J, Banerjee S, Adhikary A, Chakraborty S, Das T and Sa G: Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer. Sci Rep. 6:32979–32989. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty D, Bishayee K, Ghosh S, Biswas R, Mandal SK and Khuda-Bukhsh AR: [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: drug-DNA interaction and expression of certain signal genes in HeLa cells. Eur J Pharmacol. 694:20–29. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ju SA, Park SM, Lee YS, Bae JH, Yu R, An WG, Suh JH and Kim BS: Administration of 6-gingerol greatly enhances the number of tumor-infiltrating lymphocytes in murine tumors. Int J Cancer. 130:2618–2628. 2012. View Article : Google Scholar : PubMed/NCBI | |
Panche AN, Diwan AD and Chandra SR: Flavonoids: An overview. J Nutr Sci. 5:e472016. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Kim SK, Kim BS, Lee SH, Park YS, Park BK, Kim SJ, Kim J, Choi C, Kim JS, et al: Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J Agric Food Chem. 58:8643–8650. 2010. View Article : Google Scholar : PubMed/NCBI | |
Refolo MG, DAlessandro R, Malerba N, Laezza C, Bifulco M, Messa C, Caruso MG, Notarnicola M and Tutino V: Anti-proliferative and pro apoptotic effects of flavonoid quercetin are mediated by CB1 receptor in human colon cancer cell lines. J Cell Physiol. 230:2973–2980. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang XA, Zhang S, Yin Q and Zhang J: Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn Mag. 11:404–409. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lang T, Jin B, Chen F, Zhang Y, Beuerman RW, Zhou L and Zhang Z: Luteolin inhibits colorectal cancer cell epithelial-to-mesenchymal transition by suppressing CREB1 expression revealed by comparative proteomics study. J Proteomics. 161:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, et al: Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol. 51:1169–1178. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Zhao Y, Wang Z, Liu Y and Zhang Y: Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Mol Med Rep. 15:929–935. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Choi YJ, Park SH and Nam MJ: Potential role of nucleoside diphosphate kinase in myricetin-induced selective apoptosis in colon cancer HCT-15 cells. Food Chem Toxicol 116 (Pt B). 315–322. 2018. View Article : Google Scholar | |
Seydi E, Rasekh HR, Salimi A, Mohsenifar Z and Pourahmad J: Myricetin selectively induces apoptosis on cancerous hepatocytes by directly targeting their mitochondria. Basic Clin Pharmacol Toxicol. 119:249–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM and Saluja AK: Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett. 308:181–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Wang S, Song YU, Yao J, Huang K and Zhu X: Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett. 11:3075–3080. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Tang M, Liu Y, Zhang Z, Lu R and Lu J: Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs. 28:446–456. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Li L, Lv L, Chen D, Shen L and Xie Z: Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol Rep. 34:1035–1041. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maeda Y, Takahashi H, Nakai N, Yanagita T, Ando N, Okubo T, Saito K, Shiga K, Hirokawa T, Hara M, et al: Apigenin induces apoptosis by suppressing Bcl-xl and Mcl-1 simultaneously via signal transducer and activator of transcription 3 signaling in colon cancer. Int J Oncol. 52:1661–1673. 2018. | |
Bobe G, Sansbury LB, Albert PS, Cross AJ, Kahle L, Ashby J, Slattery ML, Caan B, Paskett E, Iber F, et al: Dietary flavonoids and colorectal adenoma recurrence in the Polyp Prevention Trial. Cancer Epidemiol Biomarkers Prev. 17:1344–1353. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee HS, Cho HJ, Yu R, Lee KW, Chun HS and Park JHY: Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int J Mol Sci. 15:2722–2737. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tong W, Wang Q, Sun D and Suo J: Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncol Lett. 12:4139–4146. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li Z, Wu Q, Chen S, Yi C and Gong C: TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors. Drug Deliv. 24:1526–1536. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shakibaei M, Kraehe P, Popper B, Shayan P, Goel A and Buhrmann C: Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer. 15:2502015. View Article : Google Scholar : PubMed/NCBI | |
Shakibaei M, Mobasheri A, Lueders C, Busch F, Shayan P and Goel A: Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One. 8:e572182013. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ren B, Wang Y, Zou C, Qiao Q, Diao Z, Mi Y, Zhu D and Liu X: Sesamol induces human hepatocellular carcinoma cells apoptosis by impairing mitochondrial function and suppressing autophagy. Sci Rep. 7:457282017. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj R, Sanyal SN, Vaiphei K, Kakkar V, Deol PK, Kaur IP and Kaur T: Sesamol induces apoptosis by altering expression of bcl-2 and bax proteins and modifies skin tumor development in Balb/c mice. Anticancer Agents Med Chem. 17:726–733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS and Nabavi SM: Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol. 15:362–372. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Xie X, Tang H, Dong X, Zhang X and Huang F: Transcriptome analysis reveals GA induced apoptosis in HCT116 human colon cancer cells through calcium and p53 signal pathways. RSC Advances. 8:12449–12458. 2018. View Article : Google Scholar | |
Rubió L, Macià A, Valls RM, Pedret A, Romero MP, Solà R and Motilva MJ: A new hydroxytyrosol metabolite identified in human plasma: Hydroxytyrosol acetate sulphate. Food Chem. 134:1132–1136. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Las Hazas MCL, Motilva MJ, Piñol C and Macià A: Application of dried blood spot cards to determine olive oil phenols (hydroxytyrosol metabolites) in human blood. Talanta. 159:189–193. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mosele JI, Martín-Peláez S, Macià A, Farràs M, Valls RM, Catalán Ú and Motilva MJ: Faecal microbial metabolism of olive oil phenolic compounds: In vitro and in vivo approaches. Mol Nutr Food Res. 58:1809–1819. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Luo C and Liu J: Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation. Food Funct. 5:1909–1914. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bertelli AA, Ferrara F, Diana G, Fulgenzi A, Corsi M, Ponti W, Ferrero ME and Bertelli A: Resveratrol, a natural stilbene in grapes and wine, enhances intraphagocytosis in human promonocytes: A co-factor in antiinflammatory and anticancer chemopreventive activity. Int J Tissue React. 21:93–104. 1999.PubMed/NCBI | |
Buhrmann C, Shayan P, Popper B, Goel A and Shakibaei M: Sirt1 is required for resveratrolmediated chemopreventive effects in colorectal cancer cells. Nutrients. 8:1452016. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Jin ZL and Xu H: MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol. Asian Pac J Trop Med. 9:49–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan SX, Wang DX, Wu QX, Ren CM, Li Y, Chen QZ, Zeng YH, Shao Y, Yang JQ, Bai Y, et al: BMP9/p38 MAPK is essential for the antiproliferative effect of resveratrol on human colon cancer. Oncol Rep. 35:939–947. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saud SM, Li W, Morris NL, Matter MS, Colburn NH, Kim YS and Young MR: Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis. 35:2778–2786. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Maria S, Scognamiglio I, Lombardi A, Amodio N, Caraglia M, Cartenì M, Ravagnan G and Stiuso P: Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell. J Transl Med. 11:2642013. View Article : Google Scholar : PubMed/NCBI | |
Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N and Akao Y: Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 24:1849–1858. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reddivari L, Charepalli V, Radhakrishnan S, Vadde R, Elias RJ, Lambert JD and Vanamala JKP: Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complement Altern Med. 16:2782016. View Article : Google Scholar : PubMed/NCBI | |
Sivakumar G: Colchicine semisynthetics: Chemotherapeutics for cancer? Curr Med Chem. 20:892–898. 2013. View Article : Google Scholar : PubMed/NCBI | |
Risinger AL, Giles FJ and Mooberry SL: Microtubule dynamics as a target in oncology. Cancer Treat Rev. 35:255–261. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Richardson RL, Dashwood RH and Baek SJ: Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. J Nutr Biochem. 23:646–655. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guamán Ortiz LM, Tillhon M, Parks M, Dutto I, Prosperi E, Savio M, Arcamone AG, Buzzetti F, Lombardi P and Scovassi AI: Multiple effects of berberine derivatives on colon cancer cells. BioMed Res Int. 2014:9245852014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu Q, Liu Z, Li B, Sun Z, Zhou H, Zhang X, Gong Y and Shao C: Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat Res. 734:20–29. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Gu L, Zhang H, Liu T, Tian D, Zhou M and Zhou S: Berberine represses DAXX gene transcription and induces cancer cell apoptosis. Lab Invest. 93:354–364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan K, Zhang C, Feng J, Hou L, Yan L, Zhou Z, Liu Z, Liu C, Fan Y, Zheng B, et al: Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells. Eur J Pharmacol. 661:1–7. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tillhon M, Guamán Ortiz LM, Lombardi P and Scovassi AI: Berberine: New perspectives for old remedies. Biochem Pharmacol. 84:1260–1267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu L, Shi Y, Cao H, Chaturvedi R, Calcutt MW, Hu T, Ren X, Wilson KT, Polk DB, et al: Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor. PLoS One. 7:e364182012. View Article : Google Scholar : PubMed/NCBI | |
Xu LN, Lu BN, Hu MM, Xu YW, Han X, Qi Y and Peng JY: Mechanisms involved in the cytotoxic effects of berberine on human colon cancer HCT-8 cells. Biocell. 36:113–20. 2012.PubMed/NCBI | |
Patel K, Gadewar M, Tripathi R, Prasad SK and Patel DK: A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid ‘Harmine’. Asian Pac J Trop Biomed. 2:660–664. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C and Holcombe RF: Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res. 1:25–37. 2009. View Article : Google Scholar : PubMed/NCBI | |
Anastas JN and Moon RT: WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 13:11–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, et al: Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 70:7392–7399. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ferguson LR and Philpott M: Cancer prevention by dietary bioactive components that target the immune response. Curr Cancer Drug Targets. 7:459–464. 2007. View Article : Google Scholar : PubMed/NCBI | |
Camuesco D, Comalada M, Rodríguez-Cabezas ME, Nieto A, Lorente MD, Concha A, Zarzuelo A and Gálvez J: The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol. 143:908–918. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kwon KH, Murakami A, Tanaka T and Ohigashi H: Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: Attenuation of pro-inflammatory gene expression. Biochem Pharmacol. 69:395–406. 2005. View Article : Google Scholar : PubMed/NCBI | |
Camuesco D, Comalada M, Concha A, Nieto A, Sierra S, Xaus J, Zarzuelo A and Gálvez J: Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin Nutr. 25:466–476. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Keku TO, Martin C, Galanko J, Woosley JT, Schroeder JC, Satia JA, Halabi S and Sandler RS: Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res. 68:323–328. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bobe G, Albert PS, Sansbury LB, Lanza E, Schatzkin A, Colburn NH and Cross AJ: Interleukin-6 as a potential indicator for prevention of high-risk adenoma recurrence by dietary flavonols in the polyp prevention trial. Cancer Prev Res (Phila). 3:764–775. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr, et al: Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila). 4:354–364. 2011. View Article : Google Scholar : PubMed/NCBI | |
He ZY, Shi CB, Wen H, Li FL, Wang BL and Wang J: Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. 29:208–213. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S and Rahman T: The difficulties in cancer treatment. Ecancermedicalscience. 6:ed162012.PubMed/NCBI |