1
|
Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei
XQ, Lin MC, Guan XY, Kung HF, Zeng YX and Xie D: High expression of
H3K27me3 in human hepatocellular carcinomas correlates closely with
vascular invasion and predicts worse prognosis in patients. Mol
Med. 17:12–20. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
He LR, Liu MZ, Li BK, Rao HL, Liao YJ,
Guan XY, Zeng YX and Xie D: Prognostic impact of H3K27me3
expression on locoregional progression after chemoradiotherapy in
esophageal squamous cell carcinoma. BMC Cancer. 9:4612009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu J, Li Y, Liao Y, Mai S, Zhang Z, Liu
Z, Jiang L, Zeng Y, Zhou F and Xie D: High expression of H3K27me3
is an independent predictor of worse outcome in patients with
urothelial carcinoma of bladder treated with radical cystectomy.
Biomed Res Int. 2013:3904822013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sabattini E, Bacci F, Sagramoso C and
Pileri S: WHO classification of tumours of haematopoietic and
lymphoid tissues in 2008: An overview. Pathologica. 102:83–87.
2010.PubMed/NCBI
|
5
|
Chen X, Song N, Matsumoto K, Nanashima A,
Nagayasu T, Hayashi T, Ying M, Endo D, Wu Z and Koji T: High
expression of trimethylated histone H3 at lysine 27 predicts better
prognosis in non-small cell lung cancer. Int J Oncol. 43:1467–1480.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wei Y, Xia W, Zhang Z, Liu J, Wang H,
Adsay NV, Albarracin C, Yu D, Abbruzzese JL, Mills GB, et al: Loss
of trimethylation at lysine 27 of histone H3 is a predictor of poor
outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog.
47:701–706. 2008. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Bassett SA and Barnett MP: The role of
dietary histone deacetylases (HDACs) inhibitors in health and
disease. Nutrients. 6:4273–4301. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Strahl BD and Allis CD: The language of
covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bannister AJ and Kouzarides T: Regulation
of chromatin by histone modifications. Cell Res. 21:381–395. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Glozak MA and Seto E: Histone deacetylases
and cancer. Oncogene. 26:5420–5432. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Smith KT and Workman JL: Histone
deacetylase inhibitors: Anticancer compounds. Int J Biochem Cell
Biol. 41:21–25. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Weichert W, Denkert C, Noske A,
Darb-Esfahani S, Dietel M, Kalloger SE, Huntsman DG and Köbel M:
Expression of class I histone deacetylases indicates poor prognosis
in endometrioid subtypes of ovarian and endometrial carcinomas.
Neoplasia. 10:1021–1027. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Halkidou K, Gaughan L, Cook S, Leung HY,
Neal DE and Robson CN: Upregulation and nuclear recruitment of
HDAC1 in hormone refractory prostate cancer. Prostate. 59:177–189.
2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Weichert W, Röske A, Niesporek S, Noske A,
Buckendahl AC, Dietel M, Gekeler V, Boehm M, Beckers T and Denkert
C: Class I histone deacetylase expression has independent
prognostic impact in human colorectal cancer: Specific role of
class I histone deacetylases in vitro and in vivo. Clin Cancer Res.
14:1669–1677. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Weichert W, Röske A, Gekeler V, Beckers T,
Ebert MP, Pross M, Dietel M, Denkert C and Röcken C: Association of
patterns of class I histone deacetylase expression with patient
prognosis in gastric cancer: A retrospective analysis. Lancet
Oncol. 9:139–148. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang W, Gao J, Man XH, Li ZS and Gong YF:
Significance of DNA methyltransferase-1 and histone deacetylase-1
in pancreatic cancer. Oncol Rep. 21:1439–1447. 2009.PubMed/NCBI
|
17
|
Fritzsche FR, Röske A, Gekeler V, Beckers
T, Stephan C, Jung K, Scholman K, Denkert C, Dietel M and
Kristiansen G: Class I histone deacetylases 1, 2 and 3 are highly
expressed in renal cell cancer. BMC Cancer. 8:3812008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Marquard L, Gjerdrum LM, Christensen IJ,
Jensen PB, Sehested M and Ralfkiaer E: Prognostic significance of
the therapeutic targets histone deacetylase 1, 2, 6 and acetylated
histone H4 in cutaneous T-cell lymphoma. Histopathology.
53:267–277. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Marquard L, Poulsen CB, Gjerdrum LM, de
Nully Brown P, Christensen IJ, Jensen PB, Sehested M, Johansen P
and Ralfkiaer E: Histone deacetylase 1, 2, 6 and acetylated histone
H4 in B- and T-cell lymphomas. Histopathology. 54:688–698. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Swigut T and Wysocka J: H3K27
demethylases, at long last. Cell. 131:29–32. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Margueron R and Reinberg D: The Polycomb
complex PRC2 and its mark in life. Nature. 469:343–349. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cao R, Wang L, Wang H, Xia L,
Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of
histone H3 lysine 27 methylation in Polycomb-group silencing.
Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Simon JA and Lange CA: Roles of the EZH2
histone methyltransferase in cancer epigenetics. Mutat Res.
647:21–29. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Velichutina I, Shaknovich R, Geng HM,
Johnson NA, Gascoyne RD, Melnick AM and Elemento O: EZH2-mediated
epigenetic silencing in germinal center B cells contributes to
proliferation and lymphomagenesis. Blood. 116:5247–5255. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Musshoff K and Schmidt-Vollmer H:
Proceedings: Prognosis of non-Hodgkin's lymphomas with special
emphasis on the staging classification. Z Krebsforsch Klin Onkol
Cancer Res Clin Oncol. 83:323–341. 1975. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ziepert M, Hasenclever D, Kuhnt E, Glass
B, Schmitz N, Pfreundschuh M and Loeffler M: Standard International
prognostic index remains a valid predictor of outcome for patients
with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin
Oncol. 28:2373–2380. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Score J, Hidalgo-Curtis C, Jones AV,
Winkelmann N, Skinner A, Ward D, Zoi K, Ernst T, Stegelmann F,
Döhner K, et al: Inactivation of polycomb repressive complex 2
components in myeloproliferative and
myelodysplastic/myeloproliferative neoplasms. Blood. 119:1208–1213.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ntziachristos P, Tsirigos A, Van
Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D,
da Ros V, Tang Z, Siegle J, et al: Genetic inactivation of the
polycomb repressive complex 2 in T cell acute lymphoblastic
leukemia. Nat Med. 18:298–301. 2012. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Simon C, Chagraoui J, Krosl J, Gendron P,
Wilhelm B, Lemieux S, Boucher G, Chagnon P, Drouin S, Lambert R, et
al: A key role for EZH2 and associated genes in mouse and human
adult T-cell acute leukemia. Genes Dev. 26:651–656. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Shi M, Shahsafaei A, Liu C, Yu H and
Dorfman DM: Enhancer of zeste homolog 2 is widely expressed in
T-cell neoplasms, is associated with high proliferation rate and
correlates with MYC and pSTAT3 expression in a subset of cases.
Leuk Lymphoma. 56:2087–2091. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Johnson DP, Spitz GS, Tharkar S, Quayle
SN, Shearstone JR, Jones S, McDowell ME, Wellman H, Tyler JK,
Cairns BR, et al: HDAC1,2 inhibition impairs EZH2- and
BBAP-mediated DNA repair to overcome chemoresistance in EZH2
gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget.
6:4863–4887. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chou DM, Adamson B, Dephoure NE, Tan X,
Nottke AC, Hurov KE, Gygi SP, Colaiácovo MP and Elledge SJ: A
chromatin localization screen reveals poly (ADP ribose)-regulated
recruitment of the repressive polycomb and NuRD complexes to sites
of DNA damage. Proc Natl Acad Sci USA. 107:18475–18480. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zappasodi R, Cavanè A, Iorio MV, Tortoreto
M, Guarnotta C, Ruggiero G, Piovan C, Magni M, Zaffaroni N,
Tagliabue E, et al: Pleiotropic antitumor effects of the pan-HDAC
inhibitor ITF2357 against c-Myc-overexpressing human B-cell
non-Hodgkin lymphomas. Int J Cancer. 135:2034–2045. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Hess-Stumpp H: Histone deacetylase
inhibitors and cancer: From cell biology to the clinic. Eur J Cell
Biol. 84:109–121. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mariadason JM: HDACs and HDAC inhibitors
in colon cancer. Epigenetics. 3:28–37. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Barneda-Zahonero B and Parra M: Histone
deacetylases and cancer. Mol Oncol. 6:579–589. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xie W, Hu K, Xu F, Zhou D, Huang W, He J,
Shi J, Luo Y, Zhang J, Lin M, et al: Significance of clinical
factors as prognostic indicators for patients with peripheral
T-cell non-Hodgkin lymphoma: A retrospective analysis of 252 cases.
Mol Clin Oncol. 1:911–917. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gallamini A, Stelitano C, Calvi R, Bellei
M, Mattei D, Vitolo U, Morabito F, Martelli M, Brusamolino E,
Iannitto E, et al: Peripheral T-cell lymphoma unspecified (PTCL-U):
A new prognostic model from a retrospective multicentric clinical
study. Blood. 103:2474–2479. 2004. View Article : Google Scholar : PubMed/NCBI
|