1
|
Wiltshire JJ, Drake TM, Uttley L and
Balasubramanian SP: Systematic Review of Trends in the Incidence
Rates of Thyroid Cancer. Thyroid. 26:1541–1552. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Navas-Carrillo D, Ríos A, Rodríguez JM,
Parrilla P and Orenes-Piñero E: Familial nonmedullary thyroid
cancer: Screening, clinical, molecular and genetic findings.
Biochim Biophys Acta. 1846:468–476. 2014.PubMed/NCBI
|
3
|
Jillard CL, Scheri RP and Sosa JA: What is
the optimal treatment of papillary thyroid cancer? Adv Surg.
49:79–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pacini F, Cetani F, Miccoli P, Mancusi F,
Ceccarelli C, Lippi F, Martino E and Pinchera A: Outcome of 309
patients with metastatic differentiated thyroid carcinoma treated
with radioiodine. World J Surg. 18:600–604. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nikiforova MN and Nikiforov YE: Molecular
genetics of thyroid cancer: Implications for diagnosis, treatment
and prognosis. Expert Rev Mol Diagn. 8:83–95. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fagin JA: How thyroid tumors start and why
it matters: Kinase mutants as targets for solid cancer
pharmacotherapy. J Endocrinol. 183:249–256. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Eilertsen M, Andersen S, Al-Saad S,
Kiselev Y, Donnem T, Stenvold H, Al-Shibli K, Richardsen E, Busund
LT and Bremnes RM: Abstract 2377: MCT1 and MCT4 in NSCLC:
Overexpression of MCT1 in tumor and stroma is an independent
prognostic marker for NSCLC survival. Cancer Res. 73 (Suppl
8):23772013.
|
9
|
Johnson JM, Lai SY, Cotzia P, Cognetti D,
Luginbuhl A, Pribitkin EA, Zhan T, Mollaee M, Domingo-Vidal M, Chen
Y, et al: Mitochondrial metabolism as a treatment target in
anaplastic thyroid cancer. Semin Oncol. 42:915–922. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Pavlides S, Whitaker-Menezes D,
Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro
MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect:
Aerobic glycolysis in cancer associated fibroblasts and the tumor
stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Witkiewicz AK, Whitaker-Menezes D,
Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S,
Martinez-Outschoorn UE, Sotgia F and Lisanti MP: Using the ‘reverse
Warburg effect’ to identify high-risk breast cancer patients:
Stromal MCT4 predicts poor clinical outcome in triple-negative
breast cancers. Cell Cycle. 11:1108–1117. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Feron O: Pyruvate into lactate and back:
From the Warburg effect to symbiotic energy fuel exchange in cancer
cells. Radiother Oncol. 92:329–333. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ullah MS, Davies AJ and Halestrap AP: The
plasma membrane lactate transporter MCT4, but not MCT1, is
up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J
Biol Chem. 281:9030–9037. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Curry JM, Tassone P, Cotzia P, Sprandio J,
Luginbuhl A, Cognetti DM, Mollaee M, Domingo M, Pribitkin EA, Keane
WM, et al: Multicompartment metabolism in papillary thyroid cancer.
Laryngoscope. 126:2410–2418. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kennedy KM, Scarbrough PM, Ribeiro A,
Richardson R, Yuan H, Sonveaux P, Landon CD, Chi JT, Pizzo S,
Schroeder T, et al: Catabolism of exogenous lactate reveals it as a
legitimate metabolic substrate in breast cancer. PLoS One.
8:e751542013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Villar VH, Merhi F, Djavaheri-Mergny M and
Durán RV: Glutaminolysis and autophagy in cancer. Autophagy.
11:1198–1208. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kianercy A, Veltri R and Pienta KJ:
Critical transitions in a game theoretic model of tumour
metabolism. Interface Focus. 4:201400142014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pacini N and Borziani F: Cancer stem cell
theory and the warburg effect, two sides of the same coin? Int J
Mol Sci. 15:8893–8930. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nahm JH, Kim HM and Koo JS:
Glycolysis-related protein expression in thyroid cancer. Tumour
Biol. 39:10104283176959222017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Haber RS, Weiser KR, Pritsker A, Reder I
and Burstein DE: GLUT1 glucose transporter expression in benign and
malignant thyroid nodules. Thyroid. 7:363–367. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim S, Chung JK, Min HS, Kang JH, Park DJ,
Jeong JM, Lee DS, Park SH, Cho BY, Lee S, et al: Expression
patterns of glucose transporter-1 gene and thyroid specific genes
in human papillary thyroid carcinoma. Nucl Med Mol Imaging.
48:91–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Davis-Yadley AH, Abbott AM, Pimiento JM,
Chen DT and Malafa MP: Increased expression of the glucose
transporter type 1 gene is associated with worse overall survival
in resected pancreatic adenocarcinoma. Pancreas. 45:974–979. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Erickson LA, Jin L, Wollan PC, Thompson
GB, van Heerden J and Lloyd RV: Expression of p27kip1 and Ki-67 in
benign and malignant thyroid tumors. Mod Pathol. 11:169–174.
1998.PubMed/NCBI
|
24
|
Pereira KM, Chaves FN, Viana TS, Carvalho
FS, Costa FW, Alves AP and Sousa FB: Oxygen metabolism in oral
cancer: HIF and GLUTs (Review). Oncol Lett. 6:311–316.
2013.(Review). View Article : Google Scholar : PubMed/NCBI
|
25
|
Burrows N, Resch J, Cowen RL, von
Wasielewski R, Hoang-Vu C, West CM, Williams KJ and Brabant G:
Expression of hypoxia-inducible factor 1 alpha in thyroid
carcinomas. Endocr Relat Cancer. 17:61–72. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiwa LS, van Diest PJ, Hoefnagel LD,
Wesseling J, Wesseling P and Moelans CB; Dutch Distant Breast
Cancer Metastases Consortium, : Upregulation of Claudin-4, CAIX and
GLUT-1 in distant breast cancer metastases. BMC Cancer. 14:8642014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zuo J, Wen J, Lei M, Wen M, Li S, Lv X,
Luo Z and Wen G: Hypoxia promotes the invasion and metastasis of
laryngeal cancer cells via EMT. Med Oncol. 33:152016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Schwartzenberg-Bar-Yoseph F, Armoni M and
Karnieli E: The tumor suppressor p53 down-regulates glucose
transporters GLUT1 and GLUT4 gene expression. Cancer Res.
64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Moreno-Sánchez R, Rodríguez-Enríquez S,
Saavedra E, Marín-Hernández A and Gallardo-Pérez JC: The
bioenergetics of cancer: Is glycolysis the main ATP supplier in all
tumor cells? Biofactors. 35:209–225. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hooft L, van der Veldt AA, Hoekstra OS,
Boers M, Molthoff CF and van Diest PJ: Hexokinase III, cyclin A and
galectin-3 are overexpressed in malignant follicular thyroid
nodules. Clin Endocrinol (Oxf). 68:252–257. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Christofk HR, Vander Heiden MG, Wu N,
Asara JM and Cantley LC: Pyruvate kinase M2 is a
phosphotyrosine-binding protein. Nature. 452:181–186. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Di Cristofaro J, Marcy M, Vasko V, Sebag
F, Fakhry N, Wynford-Thomas D and De Micco C: Molecular genetic
study comparing follicular variant versus classic papillary thyroid
carcinomas: Association of N-ras mutation in codon 61 with
follicular variant. Hum Pathol. 37:824–830. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Coelho RG, Cazarin JM, Cavalcanti de
Albuquerque JP, de Andrade BM and Carvalho DP: Differential
glycolytic profile and Warburg effect in papillary thyroid
carcinoma cell lines. Oncol Rep. 36:3673–3681. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Feng C, Gao Y, Wang C, Yu X, Zhang W, Guan
H, Shan Z and Teng W: Aberrant overexpression of pyruvate kinase M2
is associated with aggressive tumor features and the BRAF mutation
in papillary thyroid cancer. J Clin Endocrinol Metab.
98:E1524–E1533. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bikas A, Jensen K, Patel A, Costello J Jr,
McDaniel D, Klubo-Gwiezdzinska J, Larin O, Hoperia V, Burman KD,
Boyle L, et al: Glucose-deprivation increases thyroid cancer cells
sensitivity to metformin. Endocr Relat Cancer. 22:919–932. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sonveaux P, Végran F, Schroeder T, Wergin
MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C,
Jordan BF, et al: Targeting lactate-fueled respiration selectively
kills hypoxic tumor cells in mice. J Clin Invest. 118:3930–3942.
2008.PubMed/NCBI
|
37
|
Kachel P, Trojanowicz B, Sekulla C,
Prenzel H, Dralle H and Hoang-Vu C: Phosphorylation of pyruvate
kinase M2 and lactate dehydrogenase A by fibroblast growth factor
receptor 1 in benign and malignant thyroid tissue. BMC Cancer.
15:1402015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun WY, Kim HM, Jung WH and Koo JS:
Expression of serine/glycine metabolism-related proteins is
different according to the thyroid cancer subtype. J Transl Med.
14:1682016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kim HM, Lee YK and Koo JS: Expression of
glutamine metabolism-related proteins in thyroid cancer.
Oncotarget. 7:53628–53641. 2016.PubMed/NCBI
|
40
|
Kim S, Jung WH and Koo JS: The expression
of glutamine-metabolism-related proteins in breast phyllodes
tumors. Tumour Biol. 34:2683–2689. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen J, Lee HJ, Wu X, Huo L, Kim SJ, Xu L,
Wang Y, He J, Bollu LR, Gao G, et al: Gain of glucose-independent
growth upon metastasis of breast cancer cells to the brain. Cancer
Res. 75:554–565. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Murakawa T, Tsuda H, Tanimoto T, Tanabe T,
Kitahara S and Matsubara O: Expression of KIT, EGFR, HER-2 and
tyrosine phosphorylation in undifferentiated thyroid carcinoma:
Implication for a new therapeutic approach. Pathol Int. 55:757–765.
2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Oyen WJ, Bodei L, Giammarile F, Maecke HR,
Tennvall J, Luster M and Brans B: Targeted therapy in nuclear
medicine - current status and future prospects. Ann Oncol.
18:1782–1792. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cadoret A, Ovejero C, Terris B, Souil E,
Lévy L, Lamers WH, Kitajewski J, Kahn A and Perret C: New targets
of beta-catenin signaling in the liver are involved in the
glutamine metabolism. Oncogene. 21:8293–8301. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Youngblood VM, Kim LC, Edwards DN, Hwang
Y, Santapuram PR, Stirdivant SM, Lu P, Ye F, Brantley-Sieders DM
and Chen J: The ephrin-A1/EPHA2 signaling axis regulates glutamine
metabolism in HER2-positive breast cancer. Cancer Res.
76:1825–1836. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xing M: Molecular pathogenesis and
mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–199. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Delbeke D, Coleman RE, Guiberteau MJ,
Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA,
Hubner K, et al: Procedure guideline for tumor imaging with
18F-FDG PET/CT 1.0. J Nucl Med. 47:885–895.
2006.PubMed/NCBI
|
48
|
Barollo S, Pennelli G, Vianello F,
Watutantrige Fernando S, Negro I, Merante Boschin I, Pelizzo MR,
Rugge M, Mantero F, Nacamulli D, et al: BRAF in primary and
recurrent papillary thyroid cancers: The relationship with (131)I
and 2-[(18)F]fluoro-2-deoxy-D-glucose uptake ability. Eur J
Endocrinol. 163:659–663. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yoon M, Jung SJ, Kim TH, Ha TK, Urm SH,
Park JS, Lee SM and Bae SK: Relationships between transporter
expression and the status of BRAF V600E mutation and F-18 FDG
uptake in papillary thyroid carcinomas. Endocr Res. 41:64–69. 2016.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Chang JW, Park KW, Heo JH, Jung SN, Liu L,
Kim SM, Kwon IS and Koo BS: Relationship between
18F-fluorodeoxyglucose accumulation and the BRAF V600E
mutation in papillary thyroid cancer. World J Surg. 42:1–9.
2017.
|
51
|
Yoon S, An YS, Lee SJ, So EY, Kim JH,
Chung YS and Yoon JK: Relation between F-18 FDG uptake of PET/CT
and BRAFV600E mutation in papillary thyroid cancer.
Medicine (Baltimore). 94:e20632015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nagarajah J, Ho ALR, Tuttle RM, Weber WA
and Grewal RK: Correlation of BRAFV600E Mutation and
Glucose Metabolism in Thyroid Cancer Patients: An
18F-FDG PET Study. J Nucl Med. 56:662–667. 2015.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Locati LD, Licitra L, Agate L, Ou SH,
Boucher A, Jarzab B, Qin S, Kane MA, Wirth LJ, Chen C, et al:
Treatment of advanced thyroid cancer with axitinib: Phase 2 study
with pharmacokinetic/pharmacodynamic and quality-of-life
assessments. Cancer. 120:2694–2703. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sherman SI, Wirth LJ, Droz JP, Hofmann M,
Bastholt L, Martins RG, Licitra L, Eschenberg MJ, Sun YN, Juan T,
et al Motesanib Thyroid Cancer Study Group, : Motesanib diphosphate
in progressive differentiated thyroid cancer. N Engl J Med.
359:31–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang Q, Beaumont KA, Otte NJ, Font J,
Bailey CG, van Geldermalsen M, Sharp DM, Tiffen JC, Ryan RM,
Jormakka M, et al: Targeting glutamine transport to suppress
melanoma cell growth. Int J Cancer. 135:1060–1071. 2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Sandulache VC, Skinner HD, Wang Y, Chen Y,
Dodge CT, Ow TJ, Bankson JA, Myers JN and Lai SY: Glycolytic
inhibition alters anaplastic thyroid carcinoma tumor metabolism and
improves response to conventional chemotherapy and radiation. Mol
Cancer Ther. 11:1373–1380. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Robbins RJ, Wan Q, Grewal RK, Reibke R,
Gonen M, Strauss HW, Tuttle RM, Drucker W and Larson SM: Real-time
prognosis for metastatic thyroid carcinoma based on
2-[18F]fluoro-2-deoxy-D-glucose-positron emission
tomography scanning. J Clin Endocrinol Metab. 91:498–505. 2006.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Polański R, Hodgkinson CL, Fusi A, Nonaka
D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE,
et al: Activity of the monocarboxylate transporter 1 inhibitor
AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937.
2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Klubo-Gwiezdzinska J, Costello J Jr, Patel
A, Bauer A, Jensen K, Mete M, Burman KD, Wartofsky L and Vasko V:
Treatment with metformin is associated with higher remission rate
in diabetic patients with thyroid cancer. J Clin Endocrinol Metab.
98:3269–3279. 2013. View Article : Google Scholar : PubMed/NCBI
|
60
|
Cho SW, Yi KH, Han SK, Sun HJ, Kim YA, Oh
BC, Park YJ and Park DJ: Therapeutic potential of metformin in
papillary thyroid cancer in vitro and in vivo. Mol Cell Endocrinol.
393:24–29. 2014. View Article : Google Scholar : PubMed/NCBI
|