1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maffei F, Moraga JMZ, Angelini S, Zenesini
C, Musti M, Festi D, Cantelli-Forti G and Hrelia P: Micronucleus
frequency in human peripheral blood lymphocytes as a biomarker for
the early detection of colorectal cancer risk. Mutagenesis.
29:221–225. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cooper K, Squires H, Carroll C,
Papaioannou D, Booth A, Logan RF, Maguire C, Hind D and Tappenden
P: Chemoprevention of colorectal cancer: Systematic review and
economic evaluation. Health Technol Assess. 14:1–206. 2010.
View Article : Google Scholar
|
4
|
Fund/American WCR and (WCRF/I for CR
AICR). Continuous update project report, . Diet, Nutrition,
Physical Activity and Colorectal Cancer 2016. Revised 2018. World
Cancer Research Fund International; London: 2018
|
5
|
Saiful Yazan L, Muhamad Zali MF, Mohd Ali
R, Zainal NA, Esa N, Sapuan S, Ong YS, Tor YS, Gopalsamy B, Voon FL
and Syed Alwi SS: Chemopreventive properties and toxicity of
kelulut honey in sprague dawley rats induced with azoxymethane.
Biomed Res Int. 2016:40369262016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pereira LP, Silva P, Duarte M, Rodrigues
L, Duarte CM, Albuquerque C and Serra AT: Targeting colorectal
cancer proliferation, stemness and metastatic potential using
Brassicaceae extracts enriched in isothiocyanates: A 3D cell
model-based study. Nutrients. 9:E3682017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Turnbull C, Hines S, Renwick A, Hughes D,
Pernet D, Elliott A, Seal S, Warren-Perry M, Gareth Evans D, Eccles
D, et al: Mutation and association analysis of GEN1 in breast
cancer susceptibility. Breast Cancer Res Treat. 124:283–288. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Gilsing AM, Berndt SI, Ruder EH, Graubard
BI, Ferrucci LM, Burdett L, Weissfeld JL, Cross AJ and Sinha R:
Meat-related mutagen exposure, xenobiotic metabolizing gene
polymorphisms and the risk of advanced colorectal adenoma and
cancer. Carcinogenesis. 33:1332–1339. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Badolato M, Carullo G, Cione E, Aiello F
and Caroleo MC: From the hive: Honey, a novel weapon against
cancer. Eur J Med Chem. 142:290–299. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao HD, Zhang F, Shen G, Li YB, Li YH,
Jing HR, Ma LF, Yao JH and Tian XF: Sulforaphane protects liver
injury induced by intestinal ischemia reperfusion through Nrf2-ARE
pathway. World J Gastroenterol. 16:3002–3010. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tan BL, Norhaizan ME, Huynh K, Yeap SK,
Hazilawati H and Roselina K: Brewers' rice modulates oxidative
stress in azoxymethane-mediated colon carcinogenesis in rats. World
J Gastroenterol. 21:8826–8835. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Faulkner K, Mithen R and Williamson G:
Selective increase of the potential anticarcinogen
4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis.
19:605–609. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin HJ, Probst-Hensch NM, Ingles SA, Han
CY, Lin BK, Lee DB, Frankl HD, Lee ER, Longnecker MP and Haile RW:
Glutathione transferase (GSTM1) null genotype, smoking, and
prevalence of colorectal adenomas. Cancer Res. 55:1224–1226.
1995.PubMed/NCBI
|
14
|
Kikuchi M, Ushida Y, Shiozawa H, Umeda R,
Tsuruya K, Aoki Y, Suganuma H and Nishizaki Y: Sulforaphane-rich
broccoli sprout extract improves hepatic abnormalities in male
subjects. World J Gastroenterol. 21:12457–12467. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Riedl MA, Saxon A and Diaz-Sanchez D: Oral
sulforaphane increases Phase II antioxidant enzymes in the human
upper airway. Clin Immunol. 130:244–251. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mahéo K, Morel F, Langouët S, Kramer H, Le
Ferrec E, Ketterer B and Guillouzo A: Inhibition of cytochromes
P-450 and induction of glutathione S-transferases by sulforaphane
in primary human and rat hepatocytes. Cancer. 57:3649–3652.
1997.
|
17
|
Bhamre S, Sahoo D, Tibshirani R, Dill DL
and Brooks JD: Temporal changes in gene expression induced by
sulforaphane in human prostate cancer cells. Prostate. 69:181–190.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Karmakar S, Banik NL, Patel SJ and Ray SK:
Curcumin activated both receptor-mediated and mitochondria-mediated
proteolytic pathways for apoptosis in human glioblastoma T98G
cells. Neurosci Lett. 407:53–58. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu C, Huang MT, Shen G, Yuan X, Lin W,
Khor TO, Conney AH and Kong AN: Inhibition of
7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in
C57BL/6 mice by sulforaphane is mediated by nuclear factor
E2-related factor 2. Cancer Res. 66:8293–8296. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Saracino MR and Lampe JW: Phytochemical
regulation of UDP-glucuronosyltransferases: Implications for cancer
prevention. Nutr Cancer. 59:121–141. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kaminski BM, Weigert A, Brüne B,
Schumacher M, Wenzel U, Steinhilber D, Stein J and Ulrich S:
Sulforaphane potentiates oxaliplatin-induced cell growth inhibition
in colorectal cancer cells via induction of different modes of cell
death. Cancer Chemother Pharmacol. 67:1167–1178. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chikara S, Nagaprashantha LD, Singhal J,
Horne D, Awasthi S and Singhal SS: Oxidative stress and dietary
phytochemicals: Role in cancer chemoprevention and treatment.
Cancer Lett. 413:122–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bessler H and Djaldetti M: Broccoli and
human health: Immunomodulatory effect of sulforaphane in a model of
colon cancer. Int J Food Sci Nutr. 69:1–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Singh AK, Sharma N, Ghosh M, Park YH and
Jeong DK: Emerging importance of dietary phytochemicals in fight
against cancer: Role in targeting cancer stem cells. Crit Rev Food
Sci Nutr. 57:3449–3463. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yin TF, Wang M, Qing Y, Lin YM and Wu D:
Research progress on chemopreventive effects of phytochemicals on
colorectal cancer and their mechanisms. World J Gastroenterol.
22:7058–7068. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang R, An J, Ji F, Jiao H, Sun H and Zhou
D: Hypermethylation of the Keap1 gene in human lung cancer cell
lines and lung cancer tissues. Biochem Biophys Res Commun.
373:151–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang M, Zhu JY, Chen S, Qing Y, Wu D, Lin
YM, Luo JZ, Han W and Li YQ: Effects of co-treatment with
sulforaphane and autophagy modulators on uridine
5′-diphospho-glucuronosyltransferase 1A isoforms and cytochrome
P450 3A4 expression in Caco-2 human colon cancer cells.
8:2407–2416. 2014.
|
28
|
Khor TO, Huang Y, Wu TY, Shu L, Lee J and
Kong AN: Pharmacodynamics of curcumin as DNA hypomethylation agent
in restoring the expression of Nrf2 via promoter CpGs
demethylation. Biochem Pharmacol. 82:1073–1078. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Denis H, Ndlovu MN and Fuks F: Regulation
of mammalian DNA methyltransferases: A route to new mechanisms.
EMBO Rep. 12:647–56. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Martin SL, Kala R and Tollefsbol TO:
Mechanisms for the inhibition of colon cancer cells by sulforaphane
through epigenetic modulation of MicroRNA-21 and human telomerase
reverse transcriptase (hTERT) down-regulation. Curr Cancer Drug
Targets. 18:97–106. 2018.PubMed/NCBI
|
31
|
Hsu A, Wong CP, Yu Z, Williams DE,
Dashwood RH and Ho E: Promoter de-methylation of cyclin D2 by
sulforaphane in prostate cancer cells. Clin Epigenetics. 3:32011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang C, Su ZY, Khor TO, Shu L and Kong
AN: Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP
C1 cells through epigenetic regulation. Biochem Pharmacol.
85:1398–1404. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Artursson P, Palm K and Luthman K: Caco-2
monolayers in experimental and theoretical predictions of drug
transport. Adv Drug Deliv Rev. 46:27–43. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sun H, Chow EC, Liu S, Du Y and Pang KS:
The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin
Drug Metab Toxicol. 4:395–411. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang M, Chen S, Wang S, Sun D, Chen J, Li
Y, Han W, Yang X and Gao HQ: Effects of phytochemicals sulforaphane
on uridine diphosphate-glucuronosyltransferase expression as well
as cell-cycle arrest and apoptosis in human colon cancer Caco-2
cells. Chin J Physiol. 55:134–144. 2012.PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Choi JD and Lee JS: Interplay between
epigenetics and genetics in cancer. Genomics Inform. 11:164–173.
2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zuo Q, Wu R, Xiao X, Yang C, Yang Y, Wang
C, Lin L and Kong AN: The dietary flavone luteolin epigenetically
activates the Nrf2 pathway and blocks cell transformation in human
colorectal cancer HCT116 cells. J Cell Biochem. 119:9573–9582.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Su X, Jiang X, Meng L, Dong X, Shen Y and
Xin Y: Anticancer activity of sulforaphane: The epigenetic
mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev.
2018:54381792018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lubecka-Pietruszewska K, Kaufman-Szymczyk
A, Stefanska B, Cebula-Obrzut B, Smolewski P and
Fabianowska-Majewska K: Sulforaphane alone and in combination with
clofarabine epigenetically regulates the expression of DNA
methylation-silenced tumour suppressor genes in human breast cancer
cells. J Nutrigenet Nutrigenomics. 8:91–101. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jaramillo MC and Zhang DD: The emerging
role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev.
27:2179–2191. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang M, Qi YY, Chen S, Sun DF, Wang S,
Chen J, Li YQ, Han W and Yang XY: Expression of
UDP-glucuronosyltransferase 1A, nuclear factor erythroid-E2-related
factor 2 and Kelch-like ECH-associated protein 1 in colonic mucosa,
adenoma and adenocarcinoma tissue. Oncol Lett. 4:925–930. 2012.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang M, Sun DF, Wang S, Qing Y, Chen S, Wu
D, Lin YM, Luo JZ and Li YQ: Polymorphic Expression of
UDP-Glucuronosyltransferase UGTlA Gene in Human Colorectal Cancer.
PLoS One. 8:e570452013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Putri JF, Widodo N, Sakamoto K, Kaul SC
and Wadhwa R: Induction of senescence in cancer cells by
5′-Aza-2′-deoxycytidine: Bioinformatics and experimental insights
to its targets. Comput Biol Chem. 70:49–55. 2017. View Article : Google Scholar : PubMed/NCBI
|