1
|
Korrodi-Gregório L, Soto-Cerrato V,
Vitorino R, Fardilha M and Pérez-Tomás R: From Proteomic Analysis
to Potential Therapeutic Targets: Functional Profile of Two Lung
Cancer Cell Lines, A549 and SW900, Widely Studied in Pre-Clinical
Research. PLoS One. 11:e01659732016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maj E, Filip-Psurska B, Milczarek M,
Psurski M, Kutner A and Wietrzyk J: Vitamin D derivatives
potentiate the anticancer and anti-angiogenic activity of tyrosine
kinase inhibitors in combination with cytostatic drugs in an A549
non-small cell lung cancer model. Int J Oncol. 52:337–366.
2018.PubMed/NCBI
|
4
|
Chen W, Lu Y, Chen G and Huang S:
Molecular evidence of cryptotanshinone for treatment and prevention
of human cancer. Anticancer Agents Med Chem. 13:979–987. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen L, Wang HJ, Xie W, Yao Y, Zhang YS
and Wang H: Cryptotanshinone inhibits lung tumorigenesis and
induces apoptosis in cancer cells in vitro and in
vivo. Mol Med Rep. 9:2447–2452. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lu L, Zhang S, Li C, Zhou C, Li D, Liu P,
Huang M and Shen X: Cryptotanshinone inhibits human glioma cell
proliferation in vitro and in vivo through SHP-2-dependent
inhibition of STAT3 activation. Cell Death Dis. 8:e27672017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Shen L and Zhang G, Lou Z, Xu G and Zhang
G: Cryptotanshinone enhances the effect of Arsenic trioxide in
treating liver cancer cell by inducing apoptosis through
downregulating phosphorylated- STAT3 in vitro and in vivo. BMC
Complement Altern Med. 17:1062017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Macfarlane LA and Murphy PR: MicroRNA:
Biogenesis, Function and Role in Cancer. Curr Genomics. 11:537–561.
2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pratap P, Raza ST, Abbas S and Mahdi F:
MicroRNA-associated carcinogenesis in lung carcinoma. J Cancer Res
Ther. 14:249–254. 2018.PubMed/NCBI
|
10
|
Castro D, Moreira M, Gouveia AM, Pozza DH
and De Mello RA: MicroRNAs in lung cancer. Oncotarget.
8:81679–81685. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Osada H and Takahashi T: let-7 and
miR-17-92: small-sized major players in lung cancer development.
Cancer Sci. 102:9–17. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim YH, Lee WK, Lee EB, Son JW, Kim DS and
Park JY: Combined Effect of Metastasis-Related MicroRNA, miR-34 and
miR-124 Family, Methylation on Prognosis of Non-Small-Cell Lung
Cancer. Clin Lung Cancer. 18:e13–e20. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou Y, Wu D, Tao J, Qu P, Zhou Z and Hou
J: MicroRNA-133 inhibits cell proliferation, migration and invasion
by targeting epidermal growth factor receptor and its downstream
effector proteins in bladder cancer. Scand J Urol. 47:423–432.
2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guttilla IK and White BA: Coordinate
regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast
cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ortmann RA, Cheng T, Visconti R, Frucht DM
and O'Shea JJ: Janus kinases and signal transducers and activators
of transcription: Their roles in cytokine signaling, development
and immunoregulation. Arthritis Res. 2:16–32. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pastuszak-Lewandoska D,
Domańska-Senderowska D, Kordiak J, Antczak A, Czarnecka KH,
Migdalska-Sęk M, Nawrot E, Kiszałkiewicz JM and Brzeziańska-Lasota
E: Immunoexpression analysis of selected JAK/STAT pathway molecules
in patients with non- small-cell lung cancer. Pol Arch Intern Med.
127:758–764. 2017.PubMed/NCBI
|
17
|
Zhang Y, Chen L, Li F, Wang H, Yao Y, Shu
J and Ying MZ: Cryptotanshinone protects against adriamycin-induced
mitochondrial dysfunction in cardiomyocytes. Pharm Biol.
54:237–242. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chiba T, Nishimoto I, Aiso S and Matsuoka
M: Neuroprotection against neurodegenerative diseases: Development
of a novel hybrid neuroprotective peptide Colivelin. Mol Neurobiol.
35:55–84. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu W: MicroRNA, Noise, and Gene Expression
Regulation. Methods Mol Biol. 1699:91–96. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stankevicius V, Kuodyte K, Schveigert D,
Bulotiene D, Paulauskas T, Daniunaite K and Suziedelis K: Gene and
miRNA expression profiles of mouse Lewis lung carcinoma LLC1 cells
following single or fractionated dose irradiation. Oncol Lett.
13:4190–4200. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tallant C, Marrero A and Gomis-Rüth FX:
Matrix metalloproteinases: Fold and function of their catalytic
domains. Biochim Biophys Acta. 1803:20–28. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li S, Lu J, Chen Y, Xiong N, Li L, Zhang
J, Yang H, Wu C, Zeng H and Liu Y: MCP-1-induced ERK/GSK-3β/Snail
signaling facilitates the epithelial-mesenchymal transition and
promotes the migration of MCF-7 human breast carcinoma cells. Cell
Mol Immunol. 14:621–630. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jabłońska-Trypuć A, Matejczyk M and
Rosochacki S: Matrix metalloproteinases (MMPs), the main
extracellular matrix (ECM) enzymes in collagen degradation, as a
target for anticancer drugs. J Enzyme Inhib Med Chem. 31 (Supp
1):177–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen Q, Jin M, Yang F, Zhu J, Xiao Q and
Zhang L: Matrix metalloproteinases: Inflammatory regulators of cell
behaviors in vascular formation and remodeling. Mediators Inflamm.
2013:9283152013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu J, Liu XJ, Li L, Zhang SH, Li Y, Gao RJ
and Zhen YS: An engineered TIMP2-based and enediyne-integrated
fusion protein for targeting MMP-14 shows potent antitumor
efficacy. Oncotarget. 6:26322–26334. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Prideaux M, Staines KA, Jones ER, Riley
GP, Pitsillides AA and Farquharson C: MMP and TIMP temporal gene
expression during osteocytogenesis. Gene Expr Patterns. 18:29–36.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu M and Wang YZ: miR 133a suppresses cell
proliferation, migration and invasion in human lung cancer by
targeting MMP 14. Oncol Rep. 30:1398–1404. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang Y, Yao Y, Wang H, Guo Y, Zhang H and
Chen L: Effects of salidroside on glioma formation and growth
inhibition together with improvement of tumor microenvironment.
Chin J Cancer Res. 25:520–526. 2013.PubMed/NCBI
|
29
|
Yao Y, Liu S, Wang Y, Yuan W, Ding X,
Cheng T, Shen Q and Gu J: Suppression of cytochrome P450 reductase
expression promotes astrocytosis in subventricular zone of adult
mice. Neurosci Lett. 548:84–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Guan X: Cancer metastases: Challenges and
opportunities. Acta Pharm Sin B. 5:402–418. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Perlikos F, Harrington KJ and Syrigos KN:
Key molecular mechanisms in lung cancer invasion and metastasis: A
comprehensive review. Crit Rev Oncol Hematol. 87:1–11. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Pawelek JM and Chakraborty AK: The cancer
cell - leukocyte fusion theory of metastasis. Adv Cancer Res.
101:397–444. 2008. View Article : Google Scholar : PubMed/NCBI
|