1
|
Sureechatchaiyan P, Hamacher A, Brockmann
N, Stork B and Kassack MU: Adenosine enhances cisplatin sensitivity
in human ovarian cancer cells. Purinergic Signal. 14:395–408. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Zhang S, Zeng H, Zuo T,
Xia C, Yang Z and He J: Cancer incidence and mortality in China in
2013: An analysis based on urbanization level. Chin J Cancer Res.
29:1–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li J, Shao W and Feng H: MiR-542-3p, a
microRNA targeting CDK14, suppresses cell proliferation,
invasiveness, and tumorigenesis of epithelial ovarian cancer.
Biomed Pharmacother. 110:850–856. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Polyak K and Weinberg RA: Transitions
between epithelial and mesenchymal states: Acquisition of malignant
and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu
M, Li Y, Li ST, Chen J and Hong L: Lysine demethylase 2A promotes
the progression of ovarian cancer by regulating the PI3K pathway
and reversing epithelial-mesenchymal transition. Oncol Rep.
41:917–927. 2019.PubMed/NCBI
|
8
|
Dong J, Jiang D, Wang Z, Wu G, Miao L and
Huang L: Intra-articular delivery of liposomal
celecoxib-hyaluronate combination for the treatment of
osteoarthritis in rabbit model. Int J Pharm. 441:285–290. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu R, Zheng J, Li C, Pang Y, Zheng Q, Xu
X and Liu P: Celecoxib induces epithelial-mesenchymal transition in
epithelial ovarian cancer cells via regulating ZEB1 expression.
Arch Gynecol Obstet. 291:1361–1369. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang ZL, Fan ZQ, Jiang HD and Qu JM:
Selective Cox-2 inhibitor celecoxib induces epithelial-mesenchymal
transition in human lung cancer cells via activating MEK-ERK
signaling. Carcinogenesis. 34:638–646. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q,
Wong WSF, Shen HM and Wang J: Artemisinin as an anticancer drug:
Recent advances in target profiling and mechanisms of action. Med
Res Rev. 37:1492–1517. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang CJ, Wang J, Zhang J, Lee YM, Feng G,
Lim TK, Shen HM, Lin Q and Liu B: Mechanism-guided design and
synthesis of a mitochondria-targeting artemisinin analogue with
enhanced anticancer activity. Angew Chem Int Ed Engl.
55:13770–13774. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang X, Chen J, Sun L and Xu Y: SIRT1
deacetylates KLF4 to activate Claudin-5 transcription in ovarian
cancer cells. J Cell Biochem. 119:2418–2426. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kreuzinger C, Gamperl M, Wolf A, Heinze G,
Geroldinger A, Lambrechts D, Boeckx B, Smeets D, Horvat R, Aust S,
et al: Molecular characterization of 7 new established cell lines
from high grade serous ovarian cancer. Cancer Lett. 362:218–228.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu MX, Siu MK, Liu SS, Yam JW, Ngan HY
and Chan DW: Epigenetic silencing of microRNA-199b-5p is associated
with acquired chemoresistance via activation of JAG1-Notch1
signaling in ovarian cancer. Oncotarget. 5:944–958. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bonneau C, Rouzier R, Geyl C, Cortez A,
Castela M, Lis R, Daraï E and Touboul C: Predictive markers of
chemoresistance in advanced stages epithelial ovarian carcinoma.
Gynecol Oncol. 136:112–120. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livney YD and Assaraf YG: Rationally
designed nanovehicles to overcome cancer chemoresistance. Adv Drug
Deliv Rev. 65:1716–1730. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lim BJ, Jung SS, Choi SY and Lee CS:
Expression of metastasis-associated molecules in non-small cell
lung cancer and their prognostic significance. Mol Med Rep.
3:43–49. 2010.PubMed/NCBI
|
19
|
Cha BK, Kim YS, Hwang KE, Cho KH, Oh SH,
Kim BR, Jun HY, Yoon KH, Jeong ET and Kim HR: Celecoxib and
sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition
and suppress lung cancer migration and invasion via downregulation
of sirtuin 1. Oncotarget. 7:57213–57227. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bocca C, Bozzo F, Cannito S, Parola M and
Miglietta A: Celecoxib inactivates epithelial-mesenchymal
transition stimulated by hypoxia and/or epidermal growth factor in
colon cancer cells. Mol Carcinog. 51:783–795. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang YP, Wang QY, Li CH and Li XW: COX-2
inhibition by celecoxib in epithelial ovarian cancer attenuates
E-cadherin suppression through reduced Snail nuclear translocation.
Chem Biol Interact. 292:24–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li Z, Hou P, Fan D, Dong M, Ma M, Li H,
Yao R, Li Y, Wang G, Geng P, et al: The degradation of EZH2
mediated by lncRNA ANCR attenuated the invasion and metastasis of
breast cancer. Cell Death Differ. 24:59–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pang MF, Georgoudaki AM, Lambut L,
Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS,
Nelson CM, et al: TGF-β1-induced EMT promotes targeted migration of
breast cancer cells through the lymphatic system by the activation
of CCR7/CCL21-mediated chemotaxis. Oncogene. 35:748–760. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li X, Zhou Y, Liu Y, Zhang X, Chen T, Chen
K, Ba Q, Li J, Liu H and Wang H: Preclinical efficacy and safety
assessment of artemisinin-chemotherapeutic agent conjugates for
ovarian cancer. EBioMedicine. 14:44–54. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hooft van Huijsduijnen R, Guy RK, Chibale
K, Haynes RK, Peitz I, Kelter G, Phillips MA, Vennerstrom JL,
Yuthavong Y and Wells TN: Anticancer properties of distinct
antimalarial drug classes. PLoS One. 8:e829622013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fang D, Chen H, Zhu JY, Wang W, Teng Y,
Ding HF, Jing Q, Su SB and Huang S: Epithelial-mesenchymal
transition of ovarian cancer cells is sustained by Rac1 through
simultaneous activation of MEK1/2 and Src signaling pathways.
Oncogene. 36:1546–1558. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee HM, Hwang KA and Choi KC: Diverse
pathways of epithelial mesenchymal transition related with cancer
progression and metastasis and potential effects of endocrine
disrupting chemicals on epithelial mesenchymal transition process.
Mol Cell Endocrinol. 457:103–113. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu Y, Wang C, Su J, Xie Q, Ma L, Zeng L,
Yu Y, Liu S, Li S, Li Z and Sun L: Tolerance to endoplasmic
reticulum stress mediates cisplatin resistance in human ovarian
cancer cells by maintaining endoplasmic reticulum and mitochondrial
homeostasis. Oncol Rep. 34:3051–3060. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang SH, Sharrocks AD and Whitmarsh AJ:
MAP kinase signalling cascades and transcriptional regulation.
Gene. 513:1–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mak MP, Tong P, Diao L, Cardnell RJ,
Gibbons DL, William WN, Skoulidis F, Parra ER, Rodriguez-Canales J,
Wistuba II, et al: A Patient-derived, pan-cancer EMT signature
identifies global molecular alterations and immune target
enrichment following epithelial-to-mesenchymal transition. Clin
Cancer Res. 22:609–620. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xia L, Zhang B, Yan Q and Ruan S: Effects
of saponins of patrinia villosa against invasion and metastasis in
colorectal cancer cell through NF-κB signaling pathway and EMT.
Biochem Biophys Res Commun. 503:2152–2159. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang Y, Huang P, Liu X, Xiang Y, Zhang T,
Wu Y, Xu J, Sun Z, Zhen W, Zhang L, et al: Polyphyllin I inhibits
growth and invasion of cisplatin-resistant gastric cancer cells by
partially inhibiting CIP2A/PP2A/Akt signaling axis. J Pharmacol
Sci. 137:305–312. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Po JW, Roohullah A, Lynch D, DeFazio A,
Harrison M, Harnett PR, Kennedy C, de Souza P and Becker TM:
Improved ovarian cancer EMT-CTC isolation by immunomagnetic
targeting of epithelial EpCAM and mesenchymal N-cadherin. J Circ
Biomark. 7:18494544187826172018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jeong DE, Song HJ, Lim S, Lee SJ, Lim JE,
Nam DH, Joo KM, Jeong BC, Jeon SS, Choi HY and Lee HW: Repurposing
the anti-malarial drug artesunate as a novel therapeutic agent for
metastatic renal cell carcinoma due to its attenuation of tumor
growth, metastasis, and angiogenesis. Oncotarget. 6:33046–33064.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Beccafico S, Morozzi G, Marchetti MC,
Riccardi C, Sidoni A, Donato R and Sorci G: Artesunate induces ROS-
and p38 MAPK-mediated apoptosis and counteracts tumor growth in
vivo in embryonal rhabdomyosarcoma cells. Carcinogenesis.
36:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang L, Chen F, Zhang Z, Chen Y and Wang
J: Synthesis and biological evaluation of a novel
artesunate-podophyllotoxin conjugate as anticancer agent. Bioorg
Med Chem Lett. 26:38–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li Q, Wang W, Liu Y, Lian B, Zhu Q, Yao L
and Liu T: The biological characteristics of a novel
camptothecin-artesunate conjugate. Bioorg Med Chem Lett.
25:148–152. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Shi R, Cui H, Bi Y, Huang X, Song B, Cheng
C, Zhang L, Liu J, He C, Wang F, et al: Artesunate altered cellular
mechanical properties leading to deregulation of cell proliferation
and migration in esophageal squamous cell carcinoma. Oncol Lett.
9:2249–2255. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Marchion DC, Xiong Y, Chon HS, Al Sawah E,
Bou Zgheib N, Ramirez IJ, Abbasi F, Stickles XB, Judson PL, Hakam
A, et al: Gene expression data reveal common pathways that
characterize the unifocal nature of ovarian cancer. Am J Obstet
Gynecol. 209:576.e1–576.e16. 2013. View Article : Google Scholar
|
40
|
Weifeng T, Feng S, Xiangji L, Changqing S,
Zhiquan Q, Huazhong Z, Peining Y, Yong Y, Mengchao W, Xiaoqing J
and Wan-Yee L: Artemisinin inhibits in vitro and in vivo invasion
and metastasis of human hepatocellular carcinoma cells.
Phytomedicine. 18:158–162. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu B, Hu K, Li S, Zhu J, Gu L, Shen H,
Hambly BD, Bao S and Di W: Dihydroartiminisin inhibits the growth
and metastasis of epithelial ovarian cancer. Oncol Rep. 27:101–108.
2012.PubMed/NCBI
|
42
|
Qin Y, Yang G, Li M, Liu HJ, Zhong WL, Yan
XQ, Qiao KL, Yang JH, Zhai DH, Yang W, et al: Dihydroartemisinin
inhibits EMT induced by platinum-based drugs via Akt-Snail pathway.
Oncotarget. 8:103815–103827. 2017. View Article : Google Scholar : PubMed/NCBI
|