1
|
Hortobagyi GN, de la Garza Salazar J,
Pritchard K, Amadori D, Haidinger R, Hudis CA, Khaled H, Liu MC,
Martin M, Namer M, et al: The global breast cancer burden:
Variations in epidemiology and survival. Clin Breast Cancer.
6:391–401. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kumar P and Aggarwal R: An overview of
triple-negative breast cancer. Arch Gynecol Obstet. 293:247–269.
2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Engebraaten O, Vollan HKM and
Borresen-Dale AL: Triple-negative breast cancer and the need for
new therapeutic targets. Am J Pathol. 183:1064–1074. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Couzin-Frankel J: Breakthrough of the year
2013. Cancer immunotherapy. Science. 342:1432–1433. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu XJ, Kwon H, Li ZH and Fu YX: Is CD47
an innate immune checkpoint for tumor evasion? J Hematol Oncol.
10:122017. View Article : Google Scholar : PubMed/NCBI
|
6
|
McCracken MN, Cha AC and Weissman IL:
Molecular pathways: Activating T cells after cancer cell
phagocytosis from blockade of CD47 ‘don't eat me’ signals. Clin
Cancer Res. 21:3597–3601. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Willingham SB, Volkmer JP, Gentles AJ,
Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin
R, Cohen JD, et al: The CD47-signal regulatory protein alpha
(SIRPa) interaction is a therapeutic target for human solid tumors.
Proc Natl Acad Sci USA. 109:6662–6667. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vonderheide RH: CD47 blockade as another
immune checkpoint therapy for cancer. Nat Med. 21:1122–1123. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gingras I, Azim HA Jr, Ignatiadis M and
Sotiriou C: Immunology and breast cancer: Toward a new way of
understanding breast cancer and developing novel therapeutic
strategies. Clin Adv Hematol Oncol. 13:372–382. 2015.PubMed/NCBI
|
10
|
Vonderheide RH, Domchek SM and Clark AS:
Immunotherapy for breast cancer: What are we missing? Clin Cancer
Res. 23:2640–2646. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Santa-Maria CA, Park SJ, Jain S and
Gradishar WJ: Breast cancer and immunology: Biomarker and
therapeutic developments. Expert Rev Anticancer Ther. 15:1215–1222.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bianchini G, Balko JM, Mayer IA, Sanders
ME and Gianni L: Triple-negative breast cancer: Challenges and
opportunities of a heterogeneous disease. Nat Rev Clin Oncol.
13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Baccelli I, Stenzinger A, Vogel V,
Pfitzner BM, Klein C, Wallwiener M, Scharpff M, Saini M,
Holland-Letz T, Sinn HP, et al: Co-expression of MET and CD47 is a
novel prognosticator for survival of luminal breast cancer
patients. Oncotarget. 5:8147–8160. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nagahara M, Mimori K, Kataoka A, Ishii H,
Tanaka F, Nakagawa T, Sato T, Ono S, Sugihara K and Mori M:
Correlated expression of CD47 and SIRPA in bone marrow and in
peripheral blood predicts recurrence in breast cancer patients.
Clin Cancer Res. 16:4625–4635. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bener G, J Félix A, Sánchez de Diego C,
Pascual Fabregat I, Ciudad CJ and Noé V: Silencing of CD47 and
SIRPα by Polypurine reverse hoogsteen hairpins to promote MCF-7
breast cancer cells death by PMA-differentiated THP-1 cells. BMC
Immunol. 17:322016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baccelli I, Schneeweiss A, Riethdorf S,
Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bauerle T,
Wallwiener M, et al: Identification of a population of blood
circulating tumor cells from breast cancer patients that initiates
metastasis in a xenograft assay. Nat Biotechnol. 31:539–544. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kaur S, Elkahloun AG, Singh SP, Chen QR,
Meerzaman DM, Song T, Manu N, Wu W, Mannan P, Garfield SH and
Roberts DD: A function-blocking CD47 antibody suppresses stem cell
and EGF signaling in triple-negative breast cancer. Oncotarget.
7:10133–10152. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu Y, Sarkissyan M and Vadgama JV:
Epithelial-mesenchymal transition and breast cancer. J Clin Med.
5:E132016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Massagué J: TGFβ signalling in context.
Nat Rev Mol Cell Bio. 13:616–630. 2012. View Article : Google Scholar
|
20
|
Edge SB, Byrd DR, Compton CC, Fritz AG,
Greene FL and Trotti A: AJCC Cancer Staging Manual (7th). Springer.
New York, NY: 2010.
|
21
|
Lakhani SR, Ellis IO, Schnitt SJ, Tan PH
and Vijver MJ: WHO Classification of Tumours of the Breast. WHO
Classification of Tumours (4th). IARC Press. (Lyon, France).
2012.
|
22
|
Nakajima S, Doi R, Toyoda E, Tsuji S, Wada
M, Koizumi M, Tulachan SS, Ito D, Kami K, Mori T, et al: N-cadherin
expression and epithelial-mesenchymal transition in pancreatic
carcinoma. Clin Cancer Res. 10:4125–4133. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu GL, Yang HJ, Liu T and Lin YZ:
Expression and significance of E-cadherin, N-cadherin, transforming
growth factor-β1 and twist in prostate cancer. Asian Pac J Trop
Med. 7:76–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen K, Wei H, Ling S and Yi C: Expression
and significance of transforming growth factor-β1 in epithelial
ovarian cancer and its extracellular matrix. Oncol Lett.
8:2171–2174. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Newman LA, Reis-Filho JS, Morrow M, Carey
LA and King TA: The 2014 society of surgical oncology Susan G.
Komen for the cure symposium: Triple-negative breast cancer. Ann
Surg Oncol. 22:874–882. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Gajewski TF, Schreiber H and Fu YX: Innate
and adaptive immune cells in the tumor microenvironment. Nat
Immunol. 14:1014–1022. 2013. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Shuptrine CW, Ajina R, Fertig EJ,
Jablonski SA, Kim Lyerly H, Hartman ZC and Weiner LM: An unbiased
in vivo functional genomics screening approach in mice identifies
novel tumor cell-based regulators of immune rejection. Cancer
Immunol Immunother. 66:1529–1544. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Knauf S, Kalwas J, Helmkamp BF, Harwell
LW, Beecham J and Lord EM: Monoclonal antibodies against human
ovarian tumor associated antigen NB/70K: Preparation and use in a
radioimmunoassay for measuring NB/70K in serum. Cancer Immunol
Immunother. 21:217–225. 1986. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chao MP, Alizadeh AA, Tang C, Myklebust
JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, et al:
Anti-CD47 antibody synergizes with rituximab to promote
phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 142:699–713.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Galli S, Zlobec I, Schurch C, Perren A,
Ochsenbein AF and Banz Y: CD47 protein expression in acute myeloid
leukemia: A tissue microarray-based analysis. Leuk Res. 39:749–756.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee TK, Cheung VC, Lu P, Lau EY, Ma S,
Tang KH, Tong M, Lo J and Ng IO: Blockade of CD47-mediated
cathepsin S/protease-activated receptor 2 signaling provides a
therapeutic target for hepatocellular carcinoma. Hepatology.
60:179–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xiao Z, Chung H, Banan B, Manning PT, Ott
KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et
al: Antibody mediated therapy targeting CD47 inhibits tumor
progression of hepatocellular carcinoma. Cancer Lett. 360:302–309.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chan KS, Espinosa I, Chao M, Wong D,
Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, van de Rijn M, et
al: Identification, molecular characterization, clinical prognosis,
and therapeutic targeting of human bladder tumor-initiating cells.
P Natl Acad Sci USA. 106:14016–14021. 2009. View Article : Google Scholar
|
36
|
Manna PP and Frazier WA: CD47 mediates
killing of breast tumor cells via Gi-dependent inhibition of
protein kinase A. Cancer Res. 64:1026–1036. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Steinert G, Schölch S, Niemietz T, Iwata
N, García SA, Behrens B, Voigt A, Kloor M, Benner A, Bork U, et al:
Immune escape and survival mechanisms in circulating tumor cells of
colorectal cancer. Cancer Res. 74:1694–1704. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhao H, Wang J, Kong X, Li E, Liu Y, Du X,
Kang Z, Tang Y, Kuang Y, Yang Z, et al: CD47 promotes tumor
invasion and metastasis in non-small cell lung cancer. Sci Rep.
6:297192016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nieto MA, Huang RY, Jackson RA and Thiery
JP: Emt: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Noman MZ, Van Moer K, Marani V, Gemmill
RM, Tranchevent LC, Azuaje F, Muller A, Chouaib S, Thiery JP,
Berchem G and Janji B: CD47 is a direct target of SNAI1 and ZEB1
and its blockade activates the phagocytosis of breast cancer cells
undergoing EMT. Oncoimmunology. 7:e13454152018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li Y, Lu S, Xu Y, Qiu C, Jin C, Wang Y,
Liu Z and Kong B: Overexpression of CD47 predicts poor prognosis
and promotes cancer cell invasion in high-grade serous ovarian
carcinoma. Am J Transl Res. 9:2901–2910. 2017.PubMed/NCBI
|
42
|
Shinohara M, Ohyama N, Murata Y, Okazawa
H, Ohnishi H, Ishikawa O and Matozaki T: CD47 regulation of
epithelial cell spreading and migration, and its signal
transduction. Cancer Sci. 97:889–895. 2006. View Article : Google Scholar : PubMed/NCBI
|