1
|
Bekker-Méndez VC, Miranda-Peralta E,
Núñez-Enríquez JC, Olarte-Carrillo I, Guerra-Castillo FX,
Pompa-Mera EN, Ocaña-Mondragón A, Rangel-López A, Bernáldez-Ríos R,
Medina-Sanson A, et al: Prevalence of gene rearrangements in
mexican children with acute lymphoblastic Leukemia: A population
study-report from the mexican interinstitutional group for the
identification of the causes of childhood leukemia. Biomed Res Int.
2014:2105602014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mejía-Aranguré JM, Pérez-Saldivar MaL,
Pelayo-Camacho R, et al: Childhood acute leukemias in Hispanic
population: Differences by age peak and immunophenotype. Novel
Aspects in Acute Lymphoblastic Leukemia. Rijeka: InTech; Croatia:
pp. 322011
|
3
|
Leukemia in Childers. American Cancer
Society, 2019, . https://www.cancer.org/cancer/leukemia-in-children.htmlMarch
10–2019
|
4
|
Stanulla M and Schrappe M: Treatment of
childhood acute lymphoblastic leukemia. Semin Hematol. 46:52–63.
2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pui CH, Robison LL and Look AT: Acute
lymphoblastic leukaemia. Lancet. 371:1030–1043. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hider SL, Bruce IN and Thomson W: The
pharmacogenetics of methotrexate. Rheumatology (Oxford).
46:1520–1524. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Assaraf YG: Molecular basis of antifolate
resistance. Cancer Metastasis Rev. 26:153–181. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
de Beaumais TA and Jacqz-Aigrain E:
Intracellular disposition of methotrexate in acute lymphoblastic
leukemia in children. Curr Drug Metab. 13:822–834. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gonen N and Assaraf YG: Antifolates in
cancer therapy: Structure, activity and mechanisms of drug
resistance. Drug Resist Updat. 15:183–210. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wojtuszkiewicz A, Peters GJ, Woerden NL,
Dubbelman B, Escherich G, Schmiegelow K, Sonneveld E, Pieters R,
van de Ven PM, Jansen G, et al: Methotrexate resistance in relation
to treatment outcome in childhood acute lymphoblastic leukemia. J
Hematol Oncol. 8:612015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rothem L, Aronheim A and Assaraf YG:
Alterations in the expression of transcription factors and the
reduced folate carrier as a novel mechanism of antifolate
resistance in human leukemia cells. J Biol Chem. 278:8935–8941.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
de Jonge R, Hooijberg JH, van Zelst BD,
Jansen G, van Zantwijk CH, Kaspers GJ, Peters GJ, Ravindranath Y,
Pieters R and Lindemans J: Effect of polymorphisms in
folate-related genes on in vitro methotrexate sensitivity in
pediatric acute lymphoblastic leukemia. Blood. 106:717–720. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Gómez-Gómez Y, Organista-Nava J,
Saavedra-Herrera MV, Rivera-Ramírez AB, Terán-Porcayo MA, Del
Carmen Alarcón-Romero L, Illades-Aguiar B and Leyva-Vázquez MA:
Survival and risk of relapse of acute lymphoblastic leukemia in a
Mexican population is affected by dihydrofolate reductase gene
polymorphisms. Exp Ther Med. 3:665–672. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Organista-Nava J, Gómez-Gómez Y,
Illades-Aguiar B, Del Carmen Alarcón-Romero L, Saavedra-Herrera MV,
Rivera-Ramírez AB, Garzón-Barrientos VH and Leyva-Vázquez MA: High
miR-24 expression is associated with risk of relapse and poor
survival in acute leukemia. Oncol Rep. 33:1639–1649. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Reiter A, Schrappe M, Ludwig WD, Hiddemann
W, Sauter S, Henze G, Zimmermann M, Lampert F, Havers W, Niethammer
D, et al: Chemotherapy in 998 unselected childhood acute
lymphoblastic leukemia patients. Results and conclusions of the
multicenter trial ALL-BFM 86. Blood. 84:3122–3133. 1994.PubMed/NCBI
|
16
|
Chomczynski P and Sacchi N: Single-step
method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction. Anal Biochem.
162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI
|
17
|
Abdel-Haleem AM, El-Zeiry MI, Mahran LG,
Abou-Aisha K, Rady MH, Rohde J, Mostageer M and Spahn-Langguth H:
Expression of RFC/SLC19A1 is associated with tumor type in bladder
cancer patients. PLoS One. 6:e218202011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Obata T, Tanaka M, Suzuki Y and Sasaki T:
The role of thymidylate synthase in pemetrexed-resistant malignant
pleural mesothelioma cells. J Cancer Therapy. 4:82013. View Article : Google Scholar
|
19
|
Ogawa M, Watanabe M, Mitsuyama Y, Anan T,
Ohkuma M, Kobayashi T, Eto K and Yanaga K: Thymidine phosphorylase
mRNA expression may be a predictor of response to post-operative
adjuvant chemotherapy with S-1 in patients with stage III
colorectal cancer. Oncol Lett. 8:2463–2468. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Seitz U, Wagner M, Neumaier B, Wawra E,
Glatting G, Leder G, Schmid RM and Reske SN: Evaluation of
pyrimidine metabolising enzymes and in vitro uptake of
3′-[18F]fluoro-3′-deoxythymidine [(18F)FLT] in pancreatic cancer
cell lines. Eur J Nucl Med Mol Imaging. 29:1174–1181. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Malek RL, Irby RB, Guo QM, Lee K, Wong S,
He M, Tsai J, Frank B, Liu ET, Quackenbush J, et al: Identification
of Src transformation fingerprint in human colon cancer. Oncogene.
21:7256–7265. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu R, Yin L and Pu Y: Association between
gene expression of metabolizing enzymes and esophageal squamous
cell carcinomas in china. Genet Test Mol Biomarkers. 16:1211–1217.
2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kawakami K, Ooyama A, Ruszkiewicz A, Jin
M, Watanabe G, Moore J, Oka T, Iacopetta B and Minamoto T: Low
expression of gamma-glutamyl hydrolase mRNA in primary colorectal
cancer with the CpG island methylator phenotype. Br J Cancer.
98:1555–1561. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao JY, Yang XY, Gong XH, Gu ZY, Duan WY,
Wang J, Ye ZZ, Shen HB, Shi KH, Hou J, et al: Functional variant in
methionine synthase reductase intron-1 significantly increases the
risk of congenital heart disease in the han chinese population
clinical perspective. Circulation. 125:482–490. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang T, Wahlqvist ML and Li D: Effect of
n-3 polyunsaturated fatty acid on gene expression of the critical
enzymes involved in homocysteine metabolism. Nutr J. 11:62012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yoshida M, Suzuki T, Komiya T, Hatashita
E, Nishio K, Kazuhiko N and Fukuoka M: Induction of MRP5 and SMRP
mRNA by adriamycin exposure and its overexpression in human lung
cancer cells resistant to adriamycin. Int J Cancer. 94:432–437.
2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ramos-Nino ME, Scapoli L, Martinelli M,
Land S and Mossman BT: Microarray analysis and RNA silencing link
fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res.
63:3539–3545. 2003.PubMed/NCBI
|
28
|
Nolan T, Hands RE and Bustin SA:
Quantification of mRNA using real-time RT-PCR. Nat Protoc.
1:1559–1582. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dulucq S, St-Onge G, Gagné V, Ansari M,
Sinnett D, Labuda D, Moghrabi A and Krajinovic M: DNA variants in
the dihydrofolate reductase gene and outcome in childhood ALL.
Blood. 111:3692–3700. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Obuchi W, Ohtsuki S, Uchida Y, Ohmine K,
Yamori T and Terasaki T: Identification of transporters associated
with etoposide sensitivity of stomach cancer cell lines and
methotrexate sensitivity of breast cancer cell lines by
quantitative targeted absolute proteomics. Mol Pharmacol.
83:490–500. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Galbiatti ALS, Castro R, Caldas HC,
Padovani JA, Pavarino ÉC and Goloni-Bertollo EM: Alterations in the
expression pattern of MTHFR, DHFR, TYMS, and SLC19A1 genes after
treatment of laryngeal cancer cells with high and low doses of
methotrexate. Tumor Biol. 34:3765–3771. 2013. View Article : Google Scholar
|
32
|
Li WW, Waltham M, Tong W, Schweitzer BI
and Bertino JR: Increased Activity of γ-Glutamyl Hydrolase in Human
Sarcoma Cell Lines: A Novel Mechanism of Intrinsic Resistance to
Methotrexate (MTX). Chemistry and Biology of Pteridines and
Folates. Ayling JE, Nair MG and Baugh CM: Springer US; Boston, MA:
pp. 635–638. 1993, View Article : Google Scholar
|
33
|
Kim SE, Cole PD, Cho RC, Ly A, Ishiguro L,
Sohn KJ, Croxford R, Kamen BA and Kim YI: γ-Glutamyl hydrolase
modulation and folate influence chemosensitivity of cancer cells to
5-fluorouracil and methotrexate. Br J Cancer. 109:2175–2188. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Shubbar E, Helou K, Kovács A, Nemes S,
Hajizadeh S, Enerbäck C and Einbeigi Z: High levels of γ-glutamyl
hydrolase (GGH) are associated with poor prognosis and unfavorable
clinical outcomes in invasive breast cancer. BMC Cancer. 13:472013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Melling N, Rashed M, Schroeder C,
Hube-Magg C, Kluth M, Lang D, Simon R, Möller-Koop C, Steurer S,
Sauter G, et al: High-level γ-glutamyl-hydrolase (GGH) expression
is linked to poor prognosis in ERG negative prostate cancer. Int J
Mol Sci. 18:E2862017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Galpin AJ, Schuetz JD, Masson E,
Yanishevski Y, Synold TW, Barredo JC, Pui CH, Relling MV and Evans
WE: Differences in folylpolyglutamate synthetase and dihydrofolate
reductase expression in human B-Lineage versus T-lineage leukemic
lymphoblasts: Mechanisms for lineage differences in methotrexate
polyglutamylation and cytotoxicity. Mol Pharmacol. 52:155–163.
1997. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen J, Wang Q, Yin FQ, Zhang W, Yan LH
and Li L: MTRR silencing inhibits growth and cisplatin resistance
of ovarian carcinoma via inducing apoptosis and reducing autophagy.
Am J Transl Res. 7:1510–1527. 2015.PubMed/NCBI
|
38
|
Kotsopoulos J, Hecht JL, Marotti JD,
Kelemen LE and Tworoger SS: Relationship between dietary and
supplemental intake of folate, methionine, vitamin B(6) and folate
receptor α expression in ovarian tumors. Int J Cancer.
126:2191–2198. 2010.PubMed/NCBI
|
39
|
López-Cortés A, Echeverría C, Oña-Cisneros
F, Sánchez ME, Herrera C, Cabrera-Andrade A, Rosales F, Ortiz M and
Paz-Y-Miño C: Breast cancer risk associated with gene expression
and genotype polymorphisms of the folate-metabolizing MTHFR gene: A
case-control study in a high altitude Ecuadorian mestizo
population. Tumor Biol. 36:6451–6461. 2015. View Article : Google Scholar
|
40
|
Leclerc D, Campeau E, Goyette P, Adjalla
CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R and
Gravel RA: Human methionine synthase: cDNA cloning and
identification of mutations in patients of the cblG complementation
group of folate/cobalamin disorders. Hum Mol Genet. 5:1867–1874.
1996. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu LL and Wu JT: Hyperhomocysteinemia is a
risk factor for cancer and a new potential tumor marker. Clin Chim
Acta. 322:21–28. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li Y and Tollefsbol TO: Impact on DNA
methylation in cancer prevention and therapy by bioactive dietary
components. Curr Med Chem. 17:2141–2151. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wajed SA, Laird PW and DeMeester TR: DNA
methylation: An alternative pathway to cancer. Ann Surg. 234:10–20.
2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang W, Braun A, Bauman Z, Olteanu H,
Madzelan P and Banerjee R: Expression profiling of homocysteine
junction enzymes in the NCI60 panel of human cancer cell lines.
Cancer Res. 65:1554–1560. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bahari G, Hashemi M, Naderi M and Taheri
M: Association between methylenetetrahydrofolate reductase (MTHFR)
gene polymorphisms and susceptibility to childhood acute
lymphoblastic leukemia in an iranian population. Int J Hematol
Oncol Stem Cell Res. 10:130–137. 2016.PubMed/NCBI
|
46
|
Erčulj N, Kotnik BF, Debeljak M, Jazbec J
and Dolžan V: Influence of folate pathway polymorphisms on
high-dose methotrexate-related toxicity and survival in childhood
acute lymphoblastic leukemia. Leuk Lymphoma. 53:1096–1104. 2012.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Shan F, Liu YL, Wang Q and Shi YL:
Thymidylate synthase predicts poor response to pemetrexed
chemotherapy in patients with advanced breast cancer. Oncol Lett.
16:3274–3280. 2018.PubMed/NCBI
|
48
|
Yu Z, Sun J, Zhen J, Zhang Q and Yang Q:
Thymidylate synthase predicts for clinical outcome in invasive
breast cancer. Histol Histopathol. 20:871–878. 2005.PubMed/NCBI
|
49
|
Kaira K, Okumura T, Ohde Y, Takahashi T,
Murakami H, Kondo H, Nakajima T and Yamamoto N: Prognostic
significance of thymidylate synthase expression in the adjuvant
chemotherapy after resection for pulmonary metastases from
colorectal cancer. Anticancer Res. 31:2763–2771. 2011.PubMed/NCBI
|
50
|
Vrana D, Hlavac V, Brynychova V,
Vaclavikova R, Neoral C, Vrba J, Aujesky R, Matzenauer M, Melichar
B and Soucek P: ABC transporters and their role in the neoadjuvant
treatment of esophageal cancer. Int J Mol Sci. 19:E8682018.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Robey RW, Pluchino KM, Hall MD, Fojo AT,
Bates SE and Gottesman MM: Revisiting the role of ABC transporters
in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Ho MM, Hogge DE and Ling V: MDR1 and BCRP1
expression in leukemic progenitors correlates with chemotherapy
response in acute myeloid leukemia. Exp Hematol. 36:433–442. 2008.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Eadie LN, Dang P, Saunders VA, Yeung DT,
Osborn MP, Grigg AP, Hughes TP and White DL: The clinical
significance of ABCB1 overexpression in predicting outcome of CML
patients undergoing first-line imatinib treatment. Leukemia.
31:752016. View Article : Google Scholar : PubMed/NCBI
|